基于特征和SVM分类器的静态手势识别

D. Ghosh, S. Ari
{"title":"基于特征和SVM分类器的静态手势识别","authors":"D. Ghosh, S. Ari","doi":"10.1109/CSNT.2015.18","DOIUrl":null,"url":null,"abstract":"A hand gesture recognition system has a wide area of application in human computer interaction (HCI) and sign language. This work proposes a vision-based system for recognition of static hand gesture. It deals with images of bare hands, and allows to recognize gesture in illumination, rotation, position and size variation of gesture images. The proposed system consists of three phases: preprocessing, feature extraction and classification. The preprocessing phase involves image enhancement, segmentation, rotation and filtering process. To obtain a rotation invariant gesture image, a novel technique is proposed in this paper by coinciding the 1st principal component of the segmented hand gestures with vertical axes. In feature extraction phase, this work extracts localized contour sequences (LCS) and block based features and proposes a novel mixture of features (or combined features) for better representation of static hand gesture. The combined features are applied as input to multiclass support vector machine (SVM) classifier to recognize static hand gesture. The proposed system is implemented and tested on three different hand alphabet databases. The experimental results show that the proposed system able to recognize static gesture with a recognition sensitivity of 99.50%, 93.58% and 98.33% for database I, database II and database III respectively which are better compared to earlier reported methods.","PeriodicalId":334733,"journal":{"name":"2015 Fifth International Conference on Communication Systems and Network Technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Static Hand Gesture Recognition Using Mixture of Features and SVM Classifier\",\"authors\":\"D. Ghosh, S. Ari\",\"doi\":\"10.1109/CSNT.2015.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hand gesture recognition system has a wide area of application in human computer interaction (HCI) and sign language. This work proposes a vision-based system for recognition of static hand gesture. It deals with images of bare hands, and allows to recognize gesture in illumination, rotation, position and size variation of gesture images. The proposed system consists of three phases: preprocessing, feature extraction and classification. The preprocessing phase involves image enhancement, segmentation, rotation and filtering process. To obtain a rotation invariant gesture image, a novel technique is proposed in this paper by coinciding the 1st principal component of the segmented hand gestures with vertical axes. In feature extraction phase, this work extracts localized contour sequences (LCS) and block based features and proposes a novel mixture of features (or combined features) for better representation of static hand gesture. The combined features are applied as input to multiclass support vector machine (SVM) classifier to recognize static hand gesture. The proposed system is implemented and tested on three different hand alphabet databases. The experimental results show that the proposed system able to recognize static gesture with a recognition sensitivity of 99.50%, 93.58% and 98.33% for database I, database II and database III respectively which are better compared to earlier reported methods.\",\"PeriodicalId\":334733,\"journal\":{\"name\":\"2015 Fifth International Conference on Communication Systems and Network Technologies\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2015.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

手势识别系统在人机交互和手语领域有着广泛的应用。本文提出了一种基于视觉的静态手势识别系统。它处理徒手图像,并允许识别手势图像的光照、旋转、位置和大小变化。该系统包括预处理、特征提取和分类三个阶段。预处理阶段包括图像增强、分割、旋转和滤波过程。为了获得旋转不变的手势图像,本文提出了一种新的方法,即将分割的手势的第一主成分与垂直轴重合。在特征提取阶段,本文提取了局部轮廓序列(LCS)和基于块的特征,并提出了一种新的混合特征(或组合特征),以更好地表示静态手势。将组合特征作为多类支持向量机(SVM)分类器的输入,用于静态手势识别。该系统在三个不同的手写体数据库上进行了实现和测试。实验结果表明,该系统对数据库I、数据库II和数据库III的静态手势识别灵敏度分别为99.50%、93.58%和98.33%,优于已有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Hand Gesture Recognition Using Mixture of Features and SVM Classifier
A hand gesture recognition system has a wide area of application in human computer interaction (HCI) and sign language. This work proposes a vision-based system for recognition of static hand gesture. It deals with images of bare hands, and allows to recognize gesture in illumination, rotation, position and size variation of gesture images. The proposed system consists of three phases: preprocessing, feature extraction and classification. The preprocessing phase involves image enhancement, segmentation, rotation and filtering process. To obtain a rotation invariant gesture image, a novel technique is proposed in this paper by coinciding the 1st principal component of the segmented hand gestures with vertical axes. In feature extraction phase, this work extracts localized contour sequences (LCS) and block based features and proposes a novel mixture of features (or combined features) for better representation of static hand gesture. The combined features are applied as input to multiclass support vector machine (SVM) classifier to recognize static hand gesture. The proposed system is implemented and tested on three different hand alphabet databases. The experimental results show that the proposed system able to recognize static gesture with a recognition sensitivity of 99.50%, 93.58% and 98.33% for database I, database II and database III respectively which are better compared to earlier reported methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信