{"title":"https://irojournals.com/aicn/AllVolumes.html","authors":"Li Yang-yang, Wang Ya-jun, Zhang Mi-yuan","doi":"10.36548/jaicn.2022.2.001","DOIUrl":null,"url":null,"abstract":"Most of the traditional recommendation algorithm models are recommended based on the user's own historical preferences, although it can recommend POI for users to a certain extent. But in real life, people are more willing to ask their friends what they think when they have a difficult decision. Therefore, a word2vec-based social relationship point of interest recommendation model (W-SimTru) is proposed, which combines the similarity of friends based on cosine similarity with the friend trust recommendation algorithm based on TF-IDF to improve the model recommendation effect. In addition, before modeling the similarity of users, word2vec is used to process the user's historical check-in behavior to solve the problem of inaccurate recommendation due to sparse check-in data. Finally, experiments are carried out on three datasets of Los Angeles, Washington and NYC in Gowalla, and the experimental results show that the proposed W-SimTru recommendation algorithm outperforms the algorithms of the three comparative experiments.","PeriodicalId":399652,"journal":{"name":"Journal of Artificial Intelligence and Capsule Networks","volume":"9 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"https://irojournals.com/aicn/AllVolumes.html\",\"authors\":\"Li Yang-yang, Wang Ya-jun, Zhang Mi-yuan\",\"doi\":\"10.36548/jaicn.2022.2.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the traditional recommendation algorithm models are recommended based on the user's own historical preferences, although it can recommend POI for users to a certain extent. But in real life, people are more willing to ask their friends what they think when they have a difficult decision. Therefore, a word2vec-based social relationship point of interest recommendation model (W-SimTru) is proposed, which combines the similarity of friends based on cosine similarity with the friend trust recommendation algorithm based on TF-IDF to improve the model recommendation effect. In addition, before modeling the similarity of users, word2vec is used to process the user's historical check-in behavior to solve the problem of inaccurate recommendation due to sparse check-in data. Finally, experiments are carried out on three datasets of Los Angeles, Washington and NYC in Gowalla, and the experimental results show that the proposed W-SimTru recommendation algorithm outperforms the algorithms of the three comparative experiments.\",\"PeriodicalId\":399652,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Capsule Networks\",\"volume\":\"9 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Capsule Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jaicn.2022.2.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Capsule Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2022.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Most of the traditional recommendation algorithm models are recommended based on the user's own historical preferences, although it can recommend POI for users to a certain extent. But in real life, people are more willing to ask their friends what they think when they have a difficult decision. Therefore, a word2vec-based social relationship point of interest recommendation model (W-SimTru) is proposed, which combines the similarity of friends based on cosine similarity with the friend trust recommendation algorithm based on TF-IDF to improve the model recommendation effect. In addition, before modeling the similarity of users, word2vec is used to process the user's historical check-in behavior to solve the problem of inaccurate recommendation due to sparse check-in data. Finally, experiments are carried out on three datasets of Los Angeles, Washington and NYC in Gowalla, and the experimental results show that the proposed W-SimTru recommendation algorithm outperforms the algorithms of the three comparative experiments.