基于流形学习的SAR目标方向估计

Lou Jun, Wang Ling, Wang Pengyu
{"title":"基于流形学习的SAR目标方向估计","authors":"Lou Jun, Wang Ling, Wang Pengyu","doi":"10.1109/ICCWAMTIP56608.2022.10016516","DOIUrl":null,"url":null,"abstract":"Target orientation estimation is an important step in synthetic aperture radar (SAR) automatic target recognition (ATR). In this paper, we propose a SAR target orientation estimation method using manifold learning. We analyze the low dimensional manifold of SAR targets with different orientation, and show that orientation angle can be estimated from the two dimensional embedding. Results in MSTAR data set are presented and show the validity of the proposed method.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR Target Orientation Estimation Based on Manifold Learning\",\"authors\":\"Lou Jun, Wang Ling, Wang Pengyu\",\"doi\":\"10.1109/ICCWAMTIP56608.2022.10016516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target orientation estimation is an important step in synthetic aperture radar (SAR) automatic target recognition (ATR). In this paper, we propose a SAR target orientation estimation method using manifold learning. We analyze the low dimensional manifold of SAR targets with different orientation, and show that orientation angle can be estimated from the two dimensional embedding. Results in MSTAR data set are presented and show the validity of the proposed method.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标方位估计是合成孔径雷达(SAR)自动目标识别(ATR)中的一个重要步骤。本文提出了一种基于流形学习的SAR目标方向估计方法。分析了不同方位的SAR目标的低维流形,证明了通过二维嵌入可以估计出方位角。在MSTAR数据集上的结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR Target Orientation Estimation Based on Manifold Learning
Target orientation estimation is an important step in synthetic aperture radar (SAR) automatic target recognition (ATR). In this paper, we propose a SAR target orientation estimation method using manifold learning. We analyze the low dimensional manifold of SAR targets with different orientation, and show that orientation angle can be estimated from the two dimensional embedding. Results in MSTAR data set are presented and show the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信