模式识别与智能诊断中的样本属性评价

S. Subbotin
{"title":"模式识别与智能诊断中的样本属性评价","authors":"S. Subbotin","doi":"10.1109/DT.2014.6868734","DOIUrl":null,"url":null,"abstract":"The problem of development of indicators characterizing quantitative the training sample properties for the problems of pattern recognition and intelligent diagnosis is solved. It includes such measures as a sample monotonicity, complexity, repetition, relative dimensionality, relative dependence approximation simplicity, relative inconsistency, evenness, class separability and compactness, integrated criteria of sample quality evaluation, sample and feature selection criteria. The using of offered criterions in practice allows to automatize the process of a construction, analysis and comparison of neural models for pattern recognition problem.","PeriodicalId":330975,"journal":{"name":"The 10th International Conference on Digital Technologies 2014","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The sample properties evaluation for pattern recognition and intelligent diagnosis\",\"authors\":\"S. Subbotin\",\"doi\":\"10.1109/DT.2014.6868734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of development of indicators characterizing quantitative the training sample properties for the problems of pattern recognition and intelligent diagnosis is solved. It includes such measures as a sample monotonicity, complexity, repetition, relative dimensionality, relative dependence approximation simplicity, relative inconsistency, evenness, class separability and compactness, integrated criteria of sample quality evaluation, sample and feature selection criteria. The using of offered criterions in practice allows to automatize the process of a construction, analysis and comparison of neural models for pattern recognition problem.\",\"PeriodicalId\":330975,\"journal\":{\"name\":\"The 10th International Conference on Digital Technologies 2014\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th International Conference on Digital Technologies 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DT.2014.6868734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Digital Technologies 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2014.6868734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

解决了模式识别和智能诊断问题中训练样本属性定量表征指标的开发问题。它包括样本单调性、复杂性、重复性、相对维数、相对依赖、近似简洁性、相对不一致性、均匀性、类可分性和紧凑性、样本质量评价的综合准则、样本和特征选择准则。在实践中使用所提供的准则可以使模式识别问题的神经模型的构建、分析和比较过程自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The sample properties evaluation for pattern recognition and intelligent diagnosis
The problem of development of indicators characterizing quantitative the training sample properties for the problems of pattern recognition and intelligent diagnosis is solved. It includes such measures as a sample monotonicity, complexity, repetition, relative dimensionality, relative dependence approximation simplicity, relative inconsistency, evenness, class separability and compactness, integrated criteria of sample quality evaluation, sample and feature selection criteria. The using of offered criterions in practice allows to automatize the process of a construction, analysis and comparison of neural models for pattern recognition problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信