N. Balamurugan, M. Abirami, B. Buvaneswari, K. Sowmya
{"title":"包含量子力学效应的纳米四栅极MOSFET分析建模","authors":"N. Balamurugan, M. Abirami, B. Buvaneswari, K. Sowmya","doi":"10.1109/ICEDSS.2016.7587778","DOIUrl":null,"url":null,"abstract":"An analytical model for Quad gate MOSFETs considering the quantum mechanical effects that influences the performance of MOSFETs is proposed. A variable separable method used to solve the Poisson and Schrodinger equation which thereby reveals the quantum mechanical effects. An analytical expression of the inversion space charge density function for all region of the devices operation is developed. Using this expression, other parameters like Drain current, Lower sub band energy, Inversion charge sheet density, gate voltage are calculated. By considering Quantum Mechanical Effect (QME). This analytical solution gives simple and accurate insight into the quantization for various gate biases. This analytical result is compared with other existing multi gate MOSFET.","PeriodicalId":399107,"journal":{"name":"2016 Conference on Emerging Devices and Smart Systems (ICEDSS)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical modeling of nanoscale Quad Gate MOSFET including quantum mechanical effects\",\"authors\":\"N. Balamurugan, M. Abirami, B. Buvaneswari, K. Sowmya\",\"doi\":\"10.1109/ICEDSS.2016.7587778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical model for Quad gate MOSFETs considering the quantum mechanical effects that influences the performance of MOSFETs is proposed. A variable separable method used to solve the Poisson and Schrodinger equation which thereby reveals the quantum mechanical effects. An analytical expression of the inversion space charge density function for all region of the devices operation is developed. Using this expression, other parameters like Drain current, Lower sub band energy, Inversion charge sheet density, gate voltage are calculated. By considering Quantum Mechanical Effect (QME). This analytical solution gives simple and accurate insight into the quantization for various gate biases. This analytical result is compared with other existing multi gate MOSFET.\",\"PeriodicalId\":399107,\"journal\":{\"name\":\"2016 Conference on Emerging Devices and Smart Systems (ICEDSS)\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Emerging Devices and Smart Systems (ICEDSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDSS.2016.7587778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Emerging Devices and Smart Systems (ICEDSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSS.2016.7587778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical modeling of nanoscale Quad Gate MOSFET including quantum mechanical effects
An analytical model for Quad gate MOSFETs considering the quantum mechanical effects that influences the performance of MOSFETs is proposed. A variable separable method used to solve the Poisson and Schrodinger equation which thereby reveals the quantum mechanical effects. An analytical expression of the inversion space charge density function for all region of the devices operation is developed. Using this expression, other parameters like Drain current, Lower sub band energy, Inversion charge sheet density, gate voltage are calculated. By considering Quantum Mechanical Effect (QME). This analytical solution gives simple and accurate insight into the quantization for various gate biases. This analytical result is compared with other existing multi gate MOSFET.