将自行车稳定在临界速度以下

R. Chidzonga, E. Chikuni
{"title":"将自行车稳定在临界速度以下","authors":"R. Chidzonga, E. Chikuni","doi":"10.1109/AFRCON.2007.4401440","DOIUrl":null,"url":null,"abstract":"This paper discusses the control of a naturally unstable bicycle at stand still based on local linearization of a nonlinear model which results in a 2times2 multiple input multiple output system. It is shown through simulation plus new insights on stabilizing non-minimum phase systems and f-domain design techniques that it is possible to keep the bicycle vertical outside the self stability speed domain where theory in the literature has predicted that it's not possible. In reality the stabilization goal is a skill which can be acquired through practice.","PeriodicalId":112129,"journal":{"name":"AFRICON 2007","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stabilizing a bicycle below critical speed\",\"authors\":\"R. Chidzonga, E. Chikuni\",\"doi\":\"10.1109/AFRCON.2007.4401440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the control of a naturally unstable bicycle at stand still based on local linearization of a nonlinear model which results in a 2times2 multiple input multiple output system. It is shown through simulation plus new insights on stabilizing non-minimum phase systems and f-domain design techniques that it is possible to keep the bicycle vertical outside the self stability speed domain where theory in the literature has predicted that it's not possible. In reality the stabilization goal is a skill which can be acquired through practice.\",\"PeriodicalId\":112129,\"journal\":{\"name\":\"AFRICON 2007\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFRICON 2007\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFRCON.2007.4401440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRICON 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2007.4401440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了一种基于非线性模型局部线性化的自然不稳定自行车静止状态的控制方法,该方法得到了2times2多输入多输出系统。通过仿真,再加上对稳定非最小相位系统和f域设计技术的新见解,可以使自行车在自稳定速度域外保持垂直,而文献中的理论预测这是不可能的。在现实中,稳定目标是一种可以通过实践获得的技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing a bicycle below critical speed
This paper discusses the control of a naturally unstable bicycle at stand still based on local linearization of a nonlinear model which results in a 2times2 multiple input multiple output system. It is shown through simulation plus new insights on stabilizing non-minimum phase systems and f-domain design techniques that it is possible to keep the bicycle vertical outside the self stability speed domain where theory in the literature has predicted that it's not possible. In reality the stabilization goal is a skill which can be acquired through practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信