R. T. Sousa, Oge Marques, Gabriela T. F. Curado, Ronaldo Martins da Costa, A. Soares, Fabrízzio Soares, L. L. G. D. Oliveira
{"title":"儿童肺炎计算机辅助诊断系统的分类器评价","authors":"R. T. Sousa, Oge Marques, Gabriela T. F. Curado, Ronaldo Martins da Costa, A. Soares, Fabrízzio Soares, L. L. G. D. Oliveira","doi":"10.1109/CBMS.2014.98","DOIUrl":null,"url":null,"abstract":"This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare five con-temporary machine learning classifiers, namely: Naïve Bayes, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Decision Tree, combined with three dimensionality reduction algorithms: Sequential Forward Selection (SFS), Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA). Current results demonstrate that Naïve Bayes classifier combined with KPCA produces the best overall results.","PeriodicalId":398710,"journal":{"name":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evaluation of Classifiers to a Childhood Pneumonia Computer-Aided Diagnosis System\",\"authors\":\"R. T. Sousa, Oge Marques, Gabriela T. F. Curado, Ronaldo Martins da Costa, A. Soares, Fabrízzio Soares, L. L. G. D. Oliveira\",\"doi\":\"10.1109/CBMS.2014.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare five con-temporary machine learning classifiers, namely: Naïve Bayes, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Decision Tree, combined with three dimensionality reduction algorithms: Sequential Forward Selection (SFS), Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA). Current results demonstrate that Naïve Bayes classifier combined with KPCA produces the best overall results.\",\"PeriodicalId\":398710,\"journal\":{\"name\":\"2014 IEEE 27th International Symposium on Computer-Based Medical Systems\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2014.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2014.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Classifiers to a Childhood Pneumonia Computer-Aided Diagnosis System
This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare five con-temporary machine learning classifiers, namely: Naïve Bayes, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Decision Tree, combined with three dimensionality reduction algorithms: Sequential Forward Selection (SFS), Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA). Current results demonstrate that Naïve Bayes classifier combined with KPCA produces the best overall results.