利用时间序列模型和ANFIS估计器进行需求预测

S. Mohammadi, H. Keivani, M. Bakhshi, A. Mohammadi, M. Askari, F. Kavehnia
{"title":"利用时间序列模型和ANFIS估计器进行需求预测","authors":"S. Mohammadi, H. Keivani, M. Bakhshi, A. Mohammadi, M. Askari, F. Kavehnia","doi":"10.1109/UPEC.2006.367770","DOIUrl":null,"url":null,"abstract":"This paper provides an intelligence method for medium and long-term energy demand forecasting of a complicated electrical system. In this method we use energy data of several past years to train an adaptive network based on fuzzy inference system (ANFIS). We use this intelligence network to estimate the time series behaviour of energy consumption for several future years. Several simulations have been arranged to examine the efficiency of method.","PeriodicalId":184186,"journal":{"name":"Proceedings of the 41st International Universities Power Engineering Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Demand Forecasting Using Time Series Modelling and ANFIS Estimator\",\"authors\":\"S. Mohammadi, H. Keivani, M. Bakhshi, A. Mohammadi, M. Askari, F. Kavehnia\",\"doi\":\"10.1109/UPEC.2006.367770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an intelligence method for medium and long-term energy demand forecasting of a complicated electrical system. In this method we use energy data of several past years to train an adaptive network based on fuzzy inference system (ANFIS). We use this intelligence network to estimate the time series behaviour of energy consumption for several future years. Several simulations have been arranged to examine the efficiency of method.\",\"PeriodicalId\":184186,\"journal\":{\"name\":\"Proceedings of the 41st International Universities Power Engineering Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st International Universities Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2006.367770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2006.367770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文为复杂电力系统中长期能源需求预测提供了一种智能化方法。在该方法中,我们使用过去几年的能源数据来训练一个基于模糊推理系统(ANFIS)的自适应网络。我们使用这个智能网络来估计未来几年能源消耗的时间序列行为。为了验证该方法的有效性,进行了若干次仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand Forecasting Using Time Series Modelling and ANFIS Estimator
This paper provides an intelligence method for medium and long-term energy demand forecasting of a complicated electrical system. In this method we use energy data of several past years to train an adaptive network based on fuzzy inference system (ANFIS). We use this intelligence network to estimate the time series behaviour of energy consumption for several future years. Several simulations have been arranged to examine the efficiency of method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信