半定规划近似分解的下界:(扩展抽象)

E. Kaltofen, Bin Li, K. Sivaramakrishnan, Zhengfeng Yang, L. Zhi
{"title":"半定规划近似分解的下界:(扩展抽象)","authors":"E. Kaltofen, Bin Li, K. Sivaramakrishnan, Zhengfeng Yang, L. Zhi","doi":"10.1145/1277500.1277532","DOIUrl":null,"url":null,"abstract":"The problem of approximately factoring a real or complex multivariate polynomial f seeks minimal perturbations ? f to the coefficients of the input polynomial f so that the deformed polynomial f +Δ f has the desired factorization properties. Effcient algorithms exist that compute the nearest real or complex polynomial that has non-trivial factors (see [3,6 ]and the literature cited there). Here we consider the solution of the arising optimization problems polynomial optimization (POP)via semide finite programming (SDP). We restrict to real coe cients in the input and output polynomials.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lower bounds for approximate factorizations via semidefinite programming: (extended abstract)\",\"authors\":\"E. Kaltofen, Bin Li, K. Sivaramakrishnan, Zhengfeng Yang, L. Zhi\",\"doi\":\"10.1145/1277500.1277532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of approximately factoring a real or complex multivariate polynomial f seeks minimal perturbations ? f to the coefficients of the input polynomial f so that the deformed polynomial f +Δ f has the desired factorization properties. Effcient algorithms exist that compute the nearest real or complex polynomial that has non-trivial factors (see [3,6 ]and the literature cited there). Here we consider the solution of the arising optimization problems polynomial optimization (POP)via semide finite programming (SDP). We restrict to real coe cients in the input and output polynomials.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近似分解一个实数或复数多元多项式f的问题寻求最小扰动?F到输入多项式F的系数,使变形的多项式F +Δ F具有期望的因数分解性质。存在有效的算法来计算具有非平凡因子的最接近的实数或复数多项式(参见[3,6]和那里引用的文献)。本文考虑用半有限规划(SDP)求解多项式优化问题。我们将输入和输出多项式限制为实数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for approximate factorizations via semidefinite programming: (extended abstract)
The problem of approximately factoring a real or complex multivariate polynomial f seeks minimal perturbations ? f to the coefficients of the input polynomial f so that the deformed polynomial f +Δ f has the desired factorization properties. Effcient algorithms exist that compute the nearest real or complex polynomial that has non-trivial factors (see [3,6 ]and the literature cited there). Here we consider the solution of the arising optimization problems polynomial optimization (POP)via semide finite programming (SDP). We restrict to real coe cients in the input and output polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信