Manting Yao, Weina Yuan, Nan Wang, Zeyu Zhang, Yuan Qiu, Yichuan Liu
{"title":"面向异构多处理器片上系统的安全感知厂商约束任务调度","authors":"Manting Yao, Weina Yuan, Nan Wang, Zeyu Zhang, Yuan Qiu, Yichuan Liu","doi":"10.1109/ICNSC48988.2020.9238128","DOIUrl":null,"url":null,"abstract":"Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips\",\"authors\":\"Manting Yao, Weina Yuan, Nan Wang, Zeyu Zhang, Yuan Qiu, Yichuan Liu\",\"doi\":\"10.1109/ICNSC48988.2020.9238128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips
Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.