多模态优化的改进物种保护遗传算法

Dingcai Shen, Xuewen Xia
{"title":"多模态优化的改进物种保护遗传算法","authors":"Dingcai Shen, Xuewen Xia","doi":"10.1109/ICNC.2012.6234613","DOIUrl":null,"url":null,"abstract":"A new method for finding multiple solutions of multimodal optimization problems is proposed in this paper. To avoid the necessity of specifying a niche radius, the proposed method adopts hybrid of species conservation and hill-valley detection mechanism. The proposed method is compared with classical Species Conservation Genetic Algorithm (SCGA) on a number of standard benchmark problems. The experimental results show that the new approach performs better in finding all optima with no additional parameters introduced.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved species conserving genetic algorithm for multimodal optimization\",\"authors\":\"Dingcai Shen, Xuewen Xia\",\"doi\":\"10.1109/ICNC.2012.6234613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for finding multiple solutions of multimodal optimization problems is proposed in this paper. To avoid the necessity of specifying a niche radius, the proposed method adopts hybrid of species conservation and hill-valley detection mechanism. The proposed method is compared with classical Species Conservation Genetic Algorithm (SCGA) on a number of standard benchmark problems. The experimental results show that the new approach performs better in finding all optima with no additional parameters introduced.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种求解多模态优化问题多解的新方法。为了避免指定生态位半径的必要性,该方法采用了物种保护和山谷检测机制的混合方法。将该方法与经典物种保护遗传算法(SCGA)在若干标准基准问题上进行了比较。实验结果表明,在不引入额外参数的情况下,该方法具有较好的寻优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved species conserving genetic algorithm for multimodal optimization
A new method for finding multiple solutions of multimodal optimization problems is proposed in this paper. To avoid the necessity of specifying a niche radius, the proposed method adopts hybrid of species conservation and hill-valley detection mechanism. The proposed method is compared with classical Species Conservation Genetic Algorithm (SCGA) on a number of standard benchmark problems. The experimental results show that the new approach performs better in finding all optima with no additional parameters introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信