Gödel选择公理的不完备性定理(1931)

Vasil Penchev
{"title":"Gödel选择公理的不完备性定理(1931)","authors":"Vasil Penchev","doi":"10.2139/ssrn.3649398","DOIUrl":null,"url":null,"abstract":"Those incompleteness theorems mean the relation of (Peano) arithmeticand (ZFC) set theory, or philosophically, the relation of arithmetical finiteness andactual infinity. The same is managed in the framework of set theory by the axiom ofchoice (respectively, by the equivalent well-ordering \"theorem'). One may discuss thatincompleteness form the viewpoint of set theory by the axiom of choice rather thanthe usual viewpoint meant in the proof of theorems. The logical corollaries from that\"nonstandard\" viewpoint the relation of set theory and arithmetic are demonstrated","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gödel Incompleteness Theorems (1931) by the Axiom of Choice\",\"authors\":\"Vasil Penchev\",\"doi\":\"10.2139/ssrn.3649398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Those incompleteness theorems mean the relation of (Peano) arithmeticand (ZFC) set theory, or philosophically, the relation of arithmetical finiteness andactual infinity. The same is managed in the framework of set theory by the axiom ofchoice (respectively, by the equivalent well-ordering \\\"theorem'). One may discuss thatincompleteness form the viewpoint of set theory by the axiom of choice rather thanthe usual viewpoint meant in the proof of theorems. The logical corollaries from that\\\"nonstandard\\\" viewpoint the relation of set theory and arithmetic are demonstrated\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3649398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3649398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这些不完备定理指的是(Peano)算术与(ZFC)集合论的关系,或哲学上的算术有限与实际无穷的关系。在集合论的框架中,同样是通过选择公理(分别通过等价的良序“定理”)来管理的。人们可以用选择公理而不是定理证明中的通常观点来讨论集合论的不完全性。从“非标准”的观点出发,论证了集合论与算术关系的逻辑推论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Gödel Incompleteness Theorems (1931) by the Axiom of Choice
Those incompleteness theorems mean the relation of (Peano) arithmeticand (ZFC) set theory, or philosophically, the relation of arithmetical finiteness andactual infinity. The same is managed in the framework of set theory by the axiom ofchoice (respectively, by the equivalent well-ordering "theorem'). One may discuss thatincompleteness form the viewpoint of set theory by the axiom of choice rather thanthe usual viewpoint meant in the proof of theorems. The logical corollaries from that"nonstandard" viewpoint the relation of set theory and arithmetic are demonstrated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信