{"title":"多值伽罗瓦域S/D树的GFSOP最小化及其复杂性","authors":"A. Al-Rabadi, M. Perkowski","doi":"10.1109/ISMVL.2001.924567","DOIUrl":null,"url":null,"abstract":"The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiple-valued Galois field S/D trees for GFSOP minimization and their complexity\",\"authors\":\"A. Al-Rabadi, M. Perkowski\",\"doi\":\"10.1109/ISMVL.2001.924567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple-valued Galois field S/D trees for GFSOP minimization and their complexity
The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.