多值伽罗瓦域S/D树的GFSOP最小化及其复杂性

A. Al-Rabadi, M. Perkowski
{"title":"多值伽罗瓦域S/D树的GFSOP最小化及其复杂性","authors":"A. Al-Rabadi, M. Perkowski","doi":"10.1109/ISMVL.2001.924567","DOIUrl":null,"url":null,"abstract":"The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiple-valued Galois field S/D trees for GFSOP minimization and their complexity\",\"authors\":\"A. Al-Rabadi, M. Perkowski\",\"doi\":\"10.1109/ISMVL.2001.924567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.\",\"PeriodicalId\":297353,\"journal\":{\"name\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2001.924567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

二进制逻辑的S/D树的思想是一个通用概念,主要应用于ESOP最小化和新图和规范形式的生成。S/D树通过生成二进制和三元根的最小伽罗瓦场积和(GFSOP)电路的形式展示了它们的功能。四元基伽罗瓦场具有一些有趣的性质。本文将S/D树扩展到GF(4)。对任意伽罗瓦域基数和任意数量的变量,导出了计算每个变量阶包含形式(if)数的一般公式。介绍了一种新的快速计算任意伽罗瓦域基和二元函数if个数的方法;IF/下标n,2/三角形。这项研究有助于为可逆逻辑创建一个有效的GFSOP最小化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple-valued Galois field S/D trees for GFSOP minimization and their complexity
The idea of S/D trees for binary logic is a general concept that found its main application in ESOP minimization and the generation of new diagrams and canonical forms. S/D trees demonstrated their power by generating forms that include a minimum Galois-Field-Sum-of-Products (GFSOP) circuits for binary and ternary radices. Galois field of quaternary radix has some interesting properties. An extension of the S/D trees to GF(4) is presented here. A general formula to calculate the number of inclusive forms (IFs) per variable order for an arbitrary Galois field radix and arbitrary number of variables is derived. A new fast method to count the number of IFs for an arbitrary Galois field radix and functions of two variables is introduced; the IF/sub n,2/ Triangles. This research is useful to create an efficient GFSOP minimizer for reversible logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信