原子与分子逻辑中的范本瑟姆定理

Guillaume Aucher
{"title":"原子与分子逻辑中的范本瑟姆定理","authors":"Guillaume Aucher","doi":"10.4204/EPTCS.358.7","DOIUrl":null,"url":null,"abstract":"After recalling the definitions of atomic and molecular logics, we show how notions of bisimulation can be automatically defined from the truth conditions of the connectives of any of these logics. Then, we prove a generalization of van Benthem modal characterization theorem for molecular logics. Our molecular connectives should be uniform and contain all conjunctions and disjunctions. We use modal logic, the Lambek calculus and modal intuitionistic logic as case study and compare in particular our work with Olkhovikov's work.","PeriodicalId":214417,"journal":{"name":"Non-Classical Logic. Theory and Applications","volume":"86 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A van Benthem Theorem for Atomic and Molecular Logics\",\"authors\":\"Guillaume Aucher\",\"doi\":\"10.4204/EPTCS.358.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After recalling the definitions of atomic and molecular logics, we show how notions of bisimulation can be automatically defined from the truth conditions of the connectives of any of these logics. Then, we prove a generalization of van Benthem modal characterization theorem for molecular logics. Our molecular connectives should be uniform and contain all conjunctions and disjunctions. We use modal logic, the Lambek calculus and modal intuitionistic logic as case study and compare in particular our work with Olkhovikov's work.\",\"PeriodicalId\":214417,\"journal\":{\"name\":\"Non-Classical Logic. Theory and Applications\",\"volume\":\"86 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Classical Logic. Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.358.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Classical Logic. Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.358.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在回顾原子逻辑和分子逻辑的定义之后,我们将展示如何根据这些逻辑的连接词的真值条件自动定义双模拟的概念。然后,我们证明了van Benthem模态表征定理在分子逻辑中的推广。我们的分子连接词应该是统一的,包含所有的连接和分离。我们使用模态逻辑,Lambek演算和模态直觉逻辑作为案例研究,并特别将我们的工作与Olkhovikov的工作进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A van Benthem Theorem for Atomic and Molecular Logics
After recalling the definitions of atomic and molecular logics, we show how notions of bisimulation can be automatically defined from the truth conditions of the connectives of any of these logics. Then, we prove a generalization of van Benthem modal characterization theorem for molecular logics. Our molecular connectives should be uniform and contain all conjunctions and disjunctions. We use modal logic, the Lambek calculus and modal intuitionistic logic as case study and compare in particular our work with Olkhovikov's work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信