变分贝叶斯与高斯-马尔可夫-波茨先验模型联合图像恢复与分割

H. Ayasso, A. Mohammad-Djafari
{"title":"变分贝叶斯与高斯-马尔可夫-波茨先验模型联合图像恢复与分割","authors":"H. Ayasso, A. Mohammad-Djafari","doi":"10.5220/0001091805710576","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a family of non-homogeneous Gauss-Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework, in order to jointly restore and segment images degraded by a known point spread function and additive noise. The joint posterior law of all the unknowns ( the unknown image, its segmentation hidden variable and all the hyperparameters) is approximated by a separable probability laws via the variational Bayes technique. This approximation gives the possibility to obtain practically implemented joint restoration and segmentation algorithm. We will present some preliminary results and comparison with a MCMC Gibbs sampling based algorithm","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"35 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Variational Bayes with Gauss-Markov-Potts Prior Models for Joint Image Restoration and Segmentation\",\"authors\":\"H. Ayasso, A. Mohammad-Djafari\",\"doi\":\"10.5220/0001091805710576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a family of non-homogeneous Gauss-Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework, in order to jointly restore and segment images degraded by a known point spread function and additive noise. The joint posterior law of all the unknowns ( the unknown image, its segmentation hidden variable and all the hyperparameters) is approximated by a separable probability laws via the variational Bayes technique. This approximation gives the possibility to obtain practically implemented joint restoration and segmentation algorithm. We will present some preliminary results and comparison with a MCMC Gibbs sampling based algorithm\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"35 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0001091805710576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001091805710576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一组具有Potts区域标签的非齐次高斯-马尔可夫域模型,用于贝叶斯估计框架中,以共同恢复和分割被已知点扩展函数和加性噪声退化的图像。通过变分贝叶斯技术,将所有未知数(未知图像、其分割隐变量和所有超参数)的联合后验律近似为一个可分概率律。这种近似为获得实际实现的联合恢复分割算法提供了可能。我们将给出一些初步结果,并与基于MCMC Gibbs采样的算法进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Bayes with Gauss-Markov-Potts Prior Models for Joint Image Restoration and Segmentation
In this paper, we propose a family of non-homogeneous Gauss-Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework, in order to jointly restore and segment images degraded by a known point spread function and additive noise. The joint posterior law of all the unknowns ( the unknown image, its segmentation hidden variable and all the hyperparameters) is approximated by a separable probability laws via the variational Bayes technique. This approximation gives the possibility to obtain practically implemented joint restoration and segmentation algorithm. We will present some preliminary results and comparison with a MCMC Gibbs sampling based algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信