用遗传算法重建LFM信号中的缺失样本

M. Brajović, B. Lutovac, M. Daković, L. Stanković
{"title":"用遗传算法重建LFM信号中的缺失样本","authors":"M. Brajović, B. Lutovac, M. Daković, L. Stanković","doi":"10.1109/NEUREL.2018.8587029","DOIUrl":null,"url":null,"abstract":"The reconstruction of non-stationary signals with missing samples is a particularly challenging topic. The compressed sensing (CS) reconstruction requires that signals exhibit sparsity in a transformation domain. We perform the CS reconstruction of the linear frequency modulated (LFM) signals with a common chirp rate, usually appearing in ISAR imaging. To this aim, we apply the genetic algorithm (GA).","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstruction of Missing Samples in LFM Signals Using the Genetic Algorithm\",\"authors\":\"M. Brajović, B. Lutovac, M. Daković, L. Stanković\",\"doi\":\"10.1109/NEUREL.2018.8587029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction of non-stationary signals with missing samples is a particularly challenging topic. The compressed sensing (CS) reconstruction requires that signals exhibit sparsity in a transformation domain. We perform the CS reconstruction of the linear frequency modulated (LFM) signals with a common chirp rate, usually appearing in ISAR imaging. To this aim, we apply the genetic algorithm (GA).\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有缺失样本的非平稳信号的重建是一个特别具有挑战性的课题。压缩感知(CS)重构要求信号在变换域中具有稀疏性。我们对通常出现在ISAR成像中的线性调频(LFM)信号进行了具有共同啁啾率的CS重建。为此,我们采用了遗传算法(GA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Missing Samples in LFM Signals Using the Genetic Algorithm
The reconstruction of non-stationary signals with missing samples is a particularly challenging topic. The compressed sensing (CS) reconstruction requires that signals exhibit sparsity in a transformation domain. We perform the CS reconstruction of the linear frequency modulated (LFM) signals with a common chirp rate, usually appearing in ISAR imaging. To this aim, we apply the genetic algorithm (GA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信