泵循环机载风能系统机侧变流器的寿命估算与尺寸标注

Bakr Bagaber, P. Junge, A. Mertens
{"title":"泵循环机载风能系统机侧变流器的寿命估算与尺寸标注","authors":"Bakr Bagaber, P. Junge, A. Mertens","doi":"10.23919/EPE20ECCEEurope43536.2020.9215594","DOIUrl":null,"url":null,"abstract":"Fostering of high altitude wind energy (HAWE) resources above 200 meters is a recent promising technology that seeks to capture the strong wind currents at high elevations. Among the many concepts of airborne wind energy (AWE) generators, the soft-kite pumping-cycle (PC) concept promises to provide a very lightweight, high power density, and cost-effective solution. In this study, the impact of the load-cycle on the lifetime of the machine-side converter (MSC) is examined. By employing a physics-of-failure estimation approach, the main pumping-cycles and the machine speed-reversal were identified as the primary adverse influencers of the IGBT and diode solder joints. Whereas, wind speeds around 12 m/s contribute the most to the predicted degradation. To fulfill the thermal limitations and the lifetime requirements of the application, an optimum converter dimension is found using linear scaling of the semiconductors chip-area and the heatsink thermal impedances. With the generation (reel-out) phase power defined as the base value, the results suggest that the converter needs to be scaled by at least 150 % to meet the thermal constraints, and by 350 % to approach the target lifetime of ten years.","PeriodicalId":241752,"journal":{"name":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lifetime Estimation and Dimensioning of the Machine-Side Converter for Pumping-Cycle Airborne Wind Energy System\",\"authors\":\"Bakr Bagaber, P. Junge, A. Mertens\",\"doi\":\"10.23919/EPE20ECCEEurope43536.2020.9215594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fostering of high altitude wind energy (HAWE) resources above 200 meters is a recent promising technology that seeks to capture the strong wind currents at high elevations. Among the many concepts of airborne wind energy (AWE) generators, the soft-kite pumping-cycle (PC) concept promises to provide a very lightweight, high power density, and cost-effective solution. In this study, the impact of the load-cycle on the lifetime of the machine-side converter (MSC) is examined. By employing a physics-of-failure estimation approach, the main pumping-cycles and the machine speed-reversal were identified as the primary adverse influencers of the IGBT and diode solder joints. Whereas, wind speeds around 12 m/s contribute the most to the predicted degradation. To fulfill the thermal limitations and the lifetime requirements of the application, an optimum converter dimension is found using linear scaling of the semiconductors chip-area and the heatsink thermal impedances. With the generation (reel-out) phase power defined as the base value, the results suggest that the converter needs to be scaled by at least 150 % to meet the thermal constraints, and by 350 % to approach the target lifetime of ten years.\",\"PeriodicalId\":241752,\"journal\":{\"name\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EPE20ECCEEurope43536.2020.9215594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

培育海拔200米以上的高空风能(HAWE)资源是最近一项很有前途的技术,旨在捕捉高海拔地区的强风。在机载风能(AWE)发电机的众多概念中,软风筝泵送循环(PC)概念有望提供非常轻量化、高功率密度和经济高效的解决方案。本文研究了负载周期对机侧变换器(MSC)寿命的影响。通过采用物理故障估计方法,确定了主要的泵送周期和机器速度反转是对IGBT和二极管焊点的主要不利影响。而12 m/s左右的风速对预测的退化贡献最大。为了满足应用的热限制和寿命要求,利用半导体芯片面积和散热器热阻抗的线性缩放找到了最佳转换器尺寸。将产生(甩出)相功率定义为基值,结果表明,转换器需要至少缩放150%才能满足热约束,并且需要缩放350%才能接近10年的目标寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifetime Estimation and Dimensioning of the Machine-Side Converter for Pumping-Cycle Airborne Wind Energy System
Fostering of high altitude wind energy (HAWE) resources above 200 meters is a recent promising technology that seeks to capture the strong wind currents at high elevations. Among the many concepts of airborne wind energy (AWE) generators, the soft-kite pumping-cycle (PC) concept promises to provide a very lightweight, high power density, and cost-effective solution. In this study, the impact of the load-cycle on the lifetime of the machine-side converter (MSC) is examined. By employing a physics-of-failure estimation approach, the main pumping-cycles and the machine speed-reversal were identified as the primary adverse influencers of the IGBT and diode solder joints. Whereas, wind speeds around 12 m/s contribute the most to the predicted degradation. To fulfill the thermal limitations and the lifetime requirements of the application, an optimum converter dimension is found using linear scaling of the semiconductors chip-area and the heatsink thermal impedances. With the generation (reel-out) phase power defined as the base value, the results suggest that the converter needs to be scaled by at least 150 % to meet the thermal constraints, and by 350 % to approach the target lifetime of ten years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信