Elizabeth Y. Chong, Yijian Huang, Hao Wu, Tianwei Yu, N. Ghasemzadeh, K. Uppal, A. Quyyumi, Dean P. Jones
{"title":"在错误发现率估计中加入特征可靠性可以提高检测差异表达特征的统计能力","authors":"Elizabeth Y. Chong, Yijian Huang, Hao Wu, Tianwei Yu, N. Ghasemzadeh, K. Uppal, A. Quyyumi, Dean P. Jones","doi":"10.1109/ISB.2014.6990751","DOIUrl":null,"url":null,"abstract":"Feature selection is a critical step in translational omics research. False discovery rate (FDR) is anintegral tool of statistical inference in feature selection from high-throughput data. It is commonly used to screen features (SNPs, genes, proteins, or metabolites) for their relevance to the specific clinical outcome under study. Traditionally, all features are treated equally in the calculation of false discovery rate. In many applications, different features are measured with different levels of reliability. In such situations, treating all features equally will cause substantial loss of statistical power to detect significant features. Feature reliability can often be quantified in the measurements. Here we present a new method to estimate the local false discovery rate that incorporates feature reliability. We also propose a composite reliability index for metabolomics data. Combined with the new local false discovery rate method, it helps to detect more differentially expressed metabolites that are biologically meaningful in a real metabolomics dataset.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating feature reliability in false discovery rateestimation improves statistical power to detect differentially expressed features\",\"authors\":\"Elizabeth Y. Chong, Yijian Huang, Hao Wu, Tianwei Yu, N. Ghasemzadeh, K. Uppal, A. Quyyumi, Dean P. Jones\",\"doi\":\"10.1109/ISB.2014.6990751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is a critical step in translational omics research. False discovery rate (FDR) is anintegral tool of statistical inference in feature selection from high-throughput data. It is commonly used to screen features (SNPs, genes, proteins, or metabolites) for their relevance to the specific clinical outcome under study. Traditionally, all features are treated equally in the calculation of false discovery rate. In many applications, different features are measured with different levels of reliability. In such situations, treating all features equally will cause substantial loss of statistical power to detect significant features. Feature reliability can often be quantified in the measurements. Here we present a new method to estimate the local false discovery rate that incorporates feature reliability. We also propose a composite reliability index for metabolomics data. Combined with the new local false discovery rate method, it helps to detect more differentially expressed metabolites that are biologically meaningful in a real metabolomics dataset.\",\"PeriodicalId\":249103,\"journal\":{\"name\":\"2014 8th International Conference on Systems Biology (ISB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2014.6990751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incorporating feature reliability in false discovery rateestimation improves statistical power to detect differentially expressed features
Feature selection is a critical step in translational omics research. False discovery rate (FDR) is anintegral tool of statistical inference in feature selection from high-throughput data. It is commonly used to screen features (SNPs, genes, proteins, or metabolites) for their relevance to the specific clinical outcome under study. Traditionally, all features are treated equally in the calculation of false discovery rate. In many applications, different features are measured with different levels of reliability. In such situations, treating all features equally will cause substantial loss of statistical power to detect significant features. Feature reliability can often be quantified in the measurements. Here we present a new method to estimate the local false discovery rate that incorporates feature reliability. We also propose a composite reliability index for metabolomics data. Combined with the new local false discovery rate method, it helps to detect more differentially expressed metabolites that are biologically meaningful in a real metabolomics dataset.