Yusuf T. Elbadry, A. Guaily, M. Boraey, M. Abdelrahman
{"title":"基于水平集法的低雷诺数翼型主动变形控制","authors":"Yusuf T. Elbadry, A. Guaily, M. Boraey, M. Abdelrahman","doi":"10.1109/NILES53778.2021.9600518","DOIUrl":null,"url":null,"abstract":"The active control of flow around an airfoil through morphing is numerically investigated. The lock-in phenomenon was predicted while using a fixed grid. Galerkin/Least-Squares Finite Element Method was used to simulate incompressible flow over an airfoil with leading edge morphing at a Reynolds number, $Re = 5000$, and angle of attack, $\\alpha = 6^{\\circ}$. The numerical simulation was carried out using the in-house FORTRAN code. The code was validated with the literature by simulating the flow over an oscillating cylinder. The paperwork implemented a locally oscillating surface on the airfoil with a deformation function. The non-dimensional oscillation frequency was varied in the range of [0.4 - 2.7] and the flow frequencies were analyzed. The primary and secondary frequencies were recorded at each simulation and the lock-in region is specified. The streamlines and vorticity contours are presented at two different excitation frequencies, specifically, $f_{e} = 1.0$ and $f_{e} = 2.5$. The streamlines and vorticity contours showed the formation of the vortices in both cases. The results show great accuracy for the Level-Set Method compared with the literature work that used the Arbitrary Lagrangian-Eulerian method, and the flow frequencies can be predicted accurately.","PeriodicalId":249153,"journal":{"name":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active Morphing Control of Airfoil At Low Reynolds Number Using Level-Set Method\",\"authors\":\"Yusuf T. Elbadry, A. Guaily, M. Boraey, M. Abdelrahman\",\"doi\":\"10.1109/NILES53778.2021.9600518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active control of flow around an airfoil through morphing is numerically investigated. The lock-in phenomenon was predicted while using a fixed grid. Galerkin/Least-Squares Finite Element Method was used to simulate incompressible flow over an airfoil with leading edge morphing at a Reynolds number, $Re = 5000$, and angle of attack, $\\\\alpha = 6^{\\\\circ}$. The numerical simulation was carried out using the in-house FORTRAN code. The code was validated with the literature by simulating the flow over an oscillating cylinder. The paperwork implemented a locally oscillating surface on the airfoil with a deformation function. The non-dimensional oscillation frequency was varied in the range of [0.4 - 2.7] and the flow frequencies were analyzed. The primary and secondary frequencies were recorded at each simulation and the lock-in region is specified. The streamlines and vorticity contours are presented at two different excitation frequencies, specifically, $f_{e} = 1.0$ and $f_{e} = 2.5$. The streamlines and vorticity contours showed the formation of the vortices in both cases. The results show great accuracy for the Level-Set Method compared with the literature work that used the Arbitrary Lagrangian-Eulerian method, and the flow frequencies can be predicted accurately.\",\"PeriodicalId\":249153,\"journal\":{\"name\":\"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES53778.2021.9600518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES53778.2021.9600518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Morphing Control of Airfoil At Low Reynolds Number Using Level-Set Method
The active control of flow around an airfoil through morphing is numerically investigated. The lock-in phenomenon was predicted while using a fixed grid. Galerkin/Least-Squares Finite Element Method was used to simulate incompressible flow over an airfoil with leading edge morphing at a Reynolds number, $Re = 5000$, and angle of attack, $\alpha = 6^{\circ}$. The numerical simulation was carried out using the in-house FORTRAN code. The code was validated with the literature by simulating the flow over an oscillating cylinder. The paperwork implemented a locally oscillating surface on the airfoil with a deformation function. The non-dimensional oscillation frequency was varied in the range of [0.4 - 2.7] and the flow frequencies were analyzed. The primary and secondary frequencies were recorded at each simulation and the lock-in region is specified. The streamlines and vorticity contours are presented at two different excitation frequencies, specifically, $f_{e} = 1.0$ and $f_{e} = 2.5$. The streamlines and vorticity contours showed the formation of the vortices in both cases. The results show great accuracy for the Level-Set Method compared with the literature work that used the Arbitrary Lagrangian-Eulerian method, and the flow frequencies can be predicted accurately.