使用MiCADO实现云原生大数据平台

A. Mosa, T. Kiss, G. Pierantoni, J. Deslauriers, D. Kagialis, G. Terstyánszky
{"title":"使用MiCADO实现云原生大数据平台","authors":"A. Mosa, T. Kiss, G. Pierantoni, J. Deslauriers, D. Kagialis, G. Terstyánszky","doi":"10.1109/ISPDC51135.2020.00025","DOIUrl":null,"url":null,"abstract":"In the big data era, creating self-managing scalable platforms for running big data applications is a fundamental task. Such self-managing and self-healing platforms involve a proper reaction to hardware $(e. g$., cluster nodes) and software $(e. g$., big data tools) failures, besides a dynamic resizing of the allocated resources based on overload and underload situations and scaling policies. The distributed and stateful nature of big data platforms $(e. g$., Hadoop-based cluster) makes the management of these platforms a challenging task. This paper aims to design and implement a scalable cloud native Hadoop-based big data platform using MiCADO, an open-source, and a highly customisable multi-cloud orchestration and auto-scaling framework for Docker containers, orchestrated by Kubernetes. The proposed MiCADO-based big data platform automates the deployment and enables an automatic horizontal scaling (in and out) of the underlying cloud infrastructure. The empirical evaluation of the MiCADO-based big data platform demonstrates how easy, efficient, and fast it is to deploy and undeploy Hadoop clusters of different sizes. Additionally, it shows how the platform can automatically be scaled based on user-defined policies (such as CPU-based scaling).","PeriodicalId":426824,"journal":{"name":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards a Cloud Native Big Data Platform using MiCADO\",\"authors\":\"A. Mosa, T. Kiss, G. Pierantoni, J. Deslauriers, D. Kagialis, G. Terstyánszky\",\"doi\":\"10.1109/ISPDC51135.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the big data era, creating self-managing scalable platforms for running big data applications is a fundamental task. Such self-managing and self-healing platforms involve a proper reaction to hardware $(e. g$., cluster nodes) and software $(e. g$., big data tools) failures, besides a dynamic resizing of the allocated resources based on overload and underload situations and scaling policies. The distributed and stateful nature of big data platforms $(e. g$., Hadoop-based cluster) makes the management of these platforms a challenging task. This paper aims to design and implement a scalable cloud native Hadoop-based big data platform using MiCADO, an open-source, and a highly customisable multi-cloud orchestration and auto-scaling framework for Docker containers, orchestrated by Kubernetes. The proposed MiCADO-based big data platform automates the deployment and enables an automatic horizontal scaling (in and out) of the underlying cloud infrastructure. The empirical evaluation of the MiCADO-based big data platform demonstrates how easy, efficient, and fast it is to deploy and undeploy Hadoop clusters of different sizes. Additionally, it shows how the platform can automatically be scaled based on user-defined policies (such as CPU-based scaling).\",\"PeriodicalId\":426824,\"journal\":{\"name\":\"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC51135.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC51135.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在大数据时代,创建可自我管理、可扩展的大数据应用运行平台是一项基础性任务。这种自我管理和自我修复的平台需要对硬件做出适当的反应。g美元。(集群节点)和软件$(e。g美元。除了根据过载和欠载情况和扩展策略动态调整分配资源的大小之外,还会出现故障(如大数据工具)。大数据平台的分布式和有状态特性[e]。g美元。(基于hadoop的集群)使得这些平台的管理成为一项具有挑战性的任务。本文旨在使用MiCADO设计和实现一个可扩展的基于云原生hadoop的大数据平台,MiCADO是一个开源的、高度可定制的、由Kubernetes编排的用于Docker容器的多云编排和自动伸缩框架。拟议的基于micado的大数据平台可以自动化部署,并支持底层云基础设施的自动水平扩展(进出)。基于micado的大数据平台的实证评估表明,部署和取消部署不同规模的Hadoop集群是多么容易、高效和快速。此外,它还展示了如何根据用户定义的策略(如基于cpu的扩展)自动扩展平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Cloud Native Big Data Platform using MiCADO
In the big data era, creating self-managing scalable platforms for running big data applications is a fundamental task. Such self-managing and self-healing platforms involve a proper reaction to hardware $(e. g$., cluster nodes) and software $(e. g$., big data tools) failures, besides a dynamic resizing of the allocated resources based on overload and underload situations and scaling policies. The distributed and stateful nature of big data platforms $(e. g$., Hadoop-based cluster) makes the management of these platforms a challenging task. This paper aims to design and implement a scalable cloud native Hadoop-based big data platform using MiCADO, an open-source, and a highly customisable multi-cloud orchestration and auto-scaling framework for Docker containers, orchestrated by Kubernetes. The proposed MiCADO-based big data platform automates the deployment and enables an automatic horizontal scaling (in and out) of the underlying cloud infrastructure. The empirical evaluation of the MiCADO-based big data platform demonstrates how easy, efficient, and fast it is to deploy and undeploy Hadoop clusters of different sizes. Additionally, it shows how the platform can automatically be scaled based on user-defined policies (such as CPU-based scaling).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信