基于Huffman编码和隐式动作模型的动作识别

Nijun Li, Tongchi Zhou, Lin Zhou, Zhen-yang Wu
{"title":"基于Huffman编码和隐式动作模型的动作识别","authors":"Nijun Li, Tongchi Zhou, Lin Zhou, Zhen-yang Wu","doi":"10.1109/CIVEMSA.2015.7158603","DOIUrl":null,"url":null,"abstract":"Human action recognition is at the core of computer vision, and has great application value in intelligent human-computer interactions. On the basis of Bag-of-Words (BoW), this work presents a Huffman coding and Implicit Action Model (IAM) combined framework for action recognition. Specifically, Huffman coding, which outperforms naïve Bayesian method, is a robust estimation of visual words' conditional probabilities; whereas IAM captures the spatio-temporal relationships of local features and outperforms most other common machine learning methods. Spatio-Temporal Interest Points (STIPs) and Harris corners are employed as local features, and multichannel feature description is adopted to exploit the complementarity among different features. Experiments on UCF-YouTube and HOHA2 datasets systematically compare the performance of various feature channels and machine learning methods, demonstrating the effectiveness of the approaches proposed by this paper. Finally, multiple augment mechanisms such as feature fusion, hierarchical codebooks and sparse coding are integrated into the recognition system, achieving the best ever performance comparing with the state-of-the-art.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action recognition by Huffman coding and implicit action model\",\"authors\":\"Nijun Li, Tongchi Zhou, Lin Zhou, Zhen-yang Wu\",\"doi\":\"10.1109/CIVEMSA.2015.7158603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition is at the core of computer vision, and has great application value in intelligent human-computer interactions. On the basis of Bag-of-Words (BoW), this work presents a Huffman coding and Implicit Action Model (IAM) combined framework for action recognition. Specifically, Huffman coding, which outperforms naïve Bayesian method, is a robust estimation of visual words' conditional probabilities; whereas IAM captures the spatio-temporal relationships of local features and outperforms most other common machine learning methods. Spatio-Temporal Interest Points (STIPs) and Harris corners are employed as local features, and multichannel feature description is adopted to exploit the complementarity among different features. Experiments on UCF-YouTube and HOHA2 datasets systematically compare the performance of various feature channels and machine learning methods, demonstrating the effectiveness of the approaches proposed by this paper. Finally, multiple augment mechanisms such as feature fusion, hierarchical codebooks and sparse coding are integrated into the recognition system, achieving the best ever performance comparing with the state-of-the-art.\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人体动作识别是计算机视觉的核心,在智能人机交互中具有重要的应用价值。本文在词袋(BoW)的基础上,提出了一种基于Huffman编码和隐式动作模型(IAM)的动作识别框架。具体来说,霍夫曼编码优于naïve贝叶斯方法,是视觉词条件概率的鲁棒估计;而IAM捕获了局部特征的时空关系,并且优于大多数其他常见的机器学习方法。采用时空兴趣点(STIPs)和哈里斯角作为局部特征,采用多通道特征描述,利用不同特征之间的互补性。在UCF-YouTube和HOHA2数据集上的实验系统地比较了各种特征通道和机器学习方法的性能,证明了本文提出的方法的有效性。最后,将特征融合、分层码本和稀疏编码等多种增强机制集成到识别系统中,实现了迄今为止与最先进的识别系统相比的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action recognition by Huffman coding and implicit action model
Human action recognition is at the core of computer vision, and has great application value in intelligent human-computer interactions. On the basis of Bag-of-Words (BoW), this work presents a Huffman coding and Implicit Action Model (IAM) combined framework for action recognition. Specifically, Huffman coding, which outperforms naïve Bayesian method, is a robust estimation of visual words' conditional probabilities; whereas IAM captures the spatio-temporal relationships of local features and outperforms most other common machine learning methods. Spatio-Temporal Interest Points (STIPs) and Harris corners are employed as local features, and multichannel feature description is adopted to exploit the complementarity among different features. Experiments on UCF-YouTube and HOHA2 datasets systematically compare the performance of various feature channels and machine learning methods, demonstrating the effectiveness of the approaches proposed by this paper. Finally, multiple augment mechanisms such as feature fusion, hierarchical codebooks and sparse coding are integrated into the recognition system, achieving the best ever performance comparing with the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信