有专家意见的部分信息下投资组合优化:一种动态规划方法

R. Frey, A. Gabih, R. Wunderlich
{"title":"有专家意见的部分信息下投资组合优化:一种动态规划方法","authors":"R. Frey, A. Gabih, R. Wunderlich","doi":"10.31390/COSA.8.1.04","DOIUrl":null,"url":null,"abstract":"This paper investigates optimal portfolio strategies in a market where the drift is driven by an unobserved Markov chain. Information on the state of this chain is obtained from stock prices and expert opinions in the form of signals at random discrete time points. As in Frey et al. (2012), Int. J. Theor. Appl. Finance, 15, No. 1, we use stochastic filtering to transform the original problem into an optimization problem under full information where the state variable is the filter for the Markov chain. The dynamic programming equation for this problem is studied with viscosity-solution techniques and with regularization arguments.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Portfolio Optimization under Partial Information with Expert Opinions: a Dynamic Programming Approach\",\"authors\":\"R. Frey, A. Gabih, R. Wunderlich\",\"doi\":\"10.31390/COSA.8.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates optimal portfolio strategies in a market where the drift is driven by an unobserved Markov chain. Information on the state of this chain is obtained from stock prices and expert opinions in the form of signals at random discrete time points. As in Frey et al. (2012), Int. J. Theor. Appl. Finance, 15, No. 1, we use stochastic filtering to transform the original problem into an optimization problem under full information where the state variable is the filter for the Markov chain. The dynamic programming equation for this problem is studied with viscosity-solution techniques and with regularization arguments.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/COSA.8.1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.8.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文研究了漂移由不可观察马尔可夫链驱动的市场中的最优投资组合策略。这条链的状态信息以随机离散时间点的信号形式从股票价格和专家意见中获得。如Frey et al. (2012), Int。j理论的。达成。在Finance, 15, No. 1中,我们使用随机滤波将原始问题转化为全信息下的优化问题,其中状态变量为马尔可夫链的滤波器。利用粘解技术和正则化参数,研究了该问题的动态规划方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio Optimization under Partial Information with Expert Opinions: a Dynamic Programming Approach
This paper investigates optimal portfolio strategies in a market where the drift is driven by an unobserved Markov chain. Information on the state of this chain is obtained from stock prices and expert opinions in the form of signals at random discrete time points. As in Frey et al. (2012), Int. J. Theor. Appl. Finance, 15, No. 1, we use stochastic filtering to transform the original problem into an optimization problem under full information where the state variable is the filter for the Markov chain. The dynamic programming equation for this problem is studied with viscosity-solution techniques and with regularization arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信