一种用于飞机发动机健康监测的约束langevin自适应粒子滤波

Dong Quan Vu, Y. Marnissi, S. Razakarivony, M. Nocture
{"title":"一种用于飞机发动机健康监测的约束langevin自适应粒子滤波","authors":"Dong Quan Vu, Y. Marnissi, S. Razakarivony, M. Nocture","doi":"10.1109/CAI54212.2023.00087","DOIUrl":null,"url":null,"abstract":"We examine the application of particle filter in estimating performance indicators of an aircraft engine; these indicators are a crucial aspect in health monitoring and condition-based maintenance for aeronautics. This approach is flexible and not restricted by rigid assumptions often found in other methods; however, it poses three challenges in our context: (i) high computation cost: classical particle filters require a large number of particles, each of them calling a heavy model; (ii) non-observability: in our system, different system states might provide the same measurements; (iii) constraints: constraints on the estimation are required to be integrated dynamically. We propose a version of particle filter, based on Langevin dynamics, to resolve these challenges.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"32 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A constrained Langevin-adapted Particle Filter for Aircraft Engines’ Health Monitoring\",\"authors\":\"Dong Quan Vu, Y. Marnissi, S. Razakarivony, M. Nocture\",\"doi\":\"10.1109/CAI54212.2023.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the application of particle filter in estimating performance indicators of an aircraft engine; these indicators are a crucial aspect in health monitoring and condition-based maintenance for aeronautics. This approach is flexible and not restricted by rigid assumptions often found in other methods; however, it poses three challenges in our context: (i) high computation cost: classical particle filters require a large number of particles, each of them calling a heavy model; (ii) non-observability: in our system, different system states might provide the same measurements; (iii) constraints: constraints on the estimation are required to be integrated dynamically. We propose a version of particle filter, based on Langevin dynamics, to resolve these challenges.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"32 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了粒子滤波在飞机发动机性能指标估计中的应用;这些指标是航空健康监测和状态维护的一个重要方面。这种方法是灵活的,不受其他方法中常见的僵化假设的限制;然而,在我们的背景下,它提出了三个挑战:(1)计算成本高:经典粒子滤波器需要大量的粒子,每个粒子调用一个重模型;(ii)不可观测性:在我们的系统中,不同的系统状态可能提供相同的测量值;(iii)约束:要求对估计的约束进行动态集成。我们提出了一种基于朗之万动力学的粒子滤波方法来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A constrained Langevin-adapted Particle Filter for Aircraft Engines’ Health Monitoring
We examine the application of particle filter in estimating performance indicators of an aircraft engine; these indicators are a crucial aspect in health monitoring and condition-based maintenance for aeronautics. This approach is flexible and not restricted by rigid assumptions often found in other methods; however, it poses three challenges in our context: (i) high computation cost: classical particle filters require a large number of particles, each of them calling a heavy model; (ii) non-observability: in our system, different system states might provide the same measurements; (iii) constraints: constraints on the estimation are required to be integrated dynamically. We propose a version of particle filter, based on Langevin dynamics, to resolve these challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信