外部光照条件下的视觉感知

V. Polischuk, O. Koliada
{"title":"外部光照条件下的视觉感知","authors":"V. Polischuk, O. Koliada","doi":"10.33042/2079-424x.2021.60.2.04","DOIUrl":null,"url":null,"abstract":"LED street lighting is a topical trend in modern outdoor lighting. High light output of LEDs creates all conditions for modernization of electric lighting networks in Ukraine. Human vision is a complex process associated with retinal light perception. Vision is divided into: day vision, night vision, and twilight vision. The function of the eye is highly dependent on the distribution of brightness in the field of vision. The spectral sensitivity of photoreceptors varies for different wavelengths of the visible spectrum and different levels of light intensity. The rationing of the lighting installation is based on detailed studies of the observer’s visual performance depending on different lighting conditions. One of the main luminous parameters that can easily be measured objectively is illumination. Brightness as a function of illumination, the observer’s position and the spectral coefficient of the working surface reflection is more informative, but has some difficulty in measuring. There is a clear need to develop a system that would make it possible to uniquely assess the visual efficiency of a given spectral composition under certain observation conditions. It was decided to introduce the term equivalent brightness as the parameter of such a system. The difficulty of using the function Vek(λ,Lek) to calculate the equivalent brightness is the function’s dependence Vek(λ,Lek) on Lek. The aim of the study is to approximate the function of the relative spectral luminous efficiency in mesopathic regions by a set of standard CIE functions that do not depend on the value of equivalent luminosity. The calculation method Vek(λ,Lek) is proposed using only two normalized functions of the relative spectral radiation efficiency for day V(λ) and night V'(λ) vision. The use of such approximation function makes it possible to determine the equivalent brightness, which adequately reflects the level of visual perception under the conditions of ambient illumination, based on the photometric brightness of the light source. To calculate Vek(λ,Lek) we use the ICE recommended functions of relative spectral light efficiency for the twilight vision, which are based on the spectral composition of the blackbody radiation with a color temperature of 2042 K. The use of the developed methodology provides results that more accurately characterize the efficiency of light sources in outdoor lighting installations compared to the results of calculations obtained when using standard methods.","PeriodicalId":186321,"journal":{"name":"Lighting engineering and power engineering","volume":"24 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visual Perception in External Lighting Conditions\",\"authors\":\"V. Polischuk, O. Koliada\",\"doi\":\"10.33042/2079-424x.2021.60.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LED street lighting is a topical trend in modern outdoor lighting. High light output of LEDs creates all conditions for modernization of electric lighting networks in Ukraine. Human vision is a complex process associated with retinal light perception. Vision is divided into: day vision, night vision, and twilight vision. The function of the eye is highly dependent on the distribution of brightness in the field of vision. The spectral sensitivity of photoreceptors varies for different wavelengths of the visible spectrum and different levels of light intensity. The rationing of the lighting installation is based on detailed studies of the observer’s visual performance depending on different lighting conditions. One of the main luminous parameters that can easily be measured objectively is illumination. Brightness as a function of illumination, the observer’s position and the spectral coefficient of the working surface reflection is more informative, but has some difficulty in measuring. There is a clear need to develop a system that would make it possible to uniquely assess the visual efficiency of a given spectral composition under certain observation conditions. It was decided to introduce the term equivalent brightness as the parameter of such a system. The difficulty of using the function Vek(λ,Lek) to calculate the equivalent brightness is the function’s dependence Vek(λ,Lek) on Lek. The aim of the study is to approximate the function of the relative spectral luminous efficiency in mesopathic regions by a set of standard CIE functions that do not depend on the value of equivalent luminosity. The calculation method Vek(λ,Lek) is proposed using only two normalized functions of the relative spectral radiation efficiency for day V(λ) and night V'(λ) vision. The use of such approximation function makes it possible to determine the equivalent brightness, which adequately reflects the level of visual perception under the conditions of ambient illumination, based on the photometric brightness of the light source. To calculate Vek(λ,Lek) we use the ICE recommended functions of relative spectral light efficiency for the twilight vision, which are based on the spectral composition of the blackbody radiation with a color temperature of 2042 K. The use of the developed methodology provides results that more accurately characterize the efficiency of light sources in outdoor lighting installations compared to the results of calculations obtained when using standard methods.\",\"PeriodicalId\":186321,\"journal\":{\"name\":\"Lighting engineering and power engineering\",\"volume\":\"24 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lighting engineering and power engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33042/2079-424x.2021.60.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lighting engineering and power engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33042/2079-424x.2021.60.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

LED路灯照明是现代户外照明的热门趋势。led的高光输出为乌克兰电力照明网络的现代化创造了所有条件。人类视觉是一个与视网膜光感知相关的复杂过程。视力分为:白天视力、夜间视力和黄昏视力。眼睛的功能高度依赖于视野中亮度的分布。光感受器的光谱灵敏度对可见光谱的不同波长和不同的光强水平是不同的。照明装置的配给是基于对不同照明条件下观察者视觉表现的详细研究。最容易客观测量的主要发光参数之一是照度。亮度作为照度、观测者位置和工作面反射光谱系数的函数,信息量更大,但测量起来有一定的困难。显然需要开发一种系统,使其能够在某些观测条件下独特地评估给定光谱组成的视觉效率。决定引入“等效亮度”一词作为该系统的参数。利用函数Vek(λ,Lek)计算等效亮度的难点在于函数Vek(λ,Lek)对Lek的依赖性。本研究的目的是通过一组不依赖于等效光度值的标准CIE函数来近似中游地区相对光谱发光效率的函数。提出了仅利用白天V(λ)和夜间V’(λ)视觉相对光谱辐射效率的两个归一化函数计算Vek(λ,Lek)的方法。利用这种近似函数,可以根据光源的光度来确定充分反映环境照明条件下视觉感知水平的等效亮度。为了计算Vek(λ,Lek),我们使用了ICE推荐的黄昏视觉相对光谱光效率函数,该函数基于色温为2042 K的黑体辐射的光谱组成。与使用标准方法获得的计算结果相比,使用开发的方法提供的结果更准确地描述了室外照明装置中光源的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Perception in External Lighting Conditions
LED street lighting is a topical trend in modern outdoor lighting. High light output of LEDs creates all conditions for modernization of electric lighting networks in Ukraine. Human vision is a complex process associated with retinal light perception. Vision is divided into: day vision, night vision, and twilight vision. The function of the eye is highly dependent on the distribution of brightness in the field of vision. The spectral sensitivity of photoreceptors varies for different wavelengths of the visible spectrum and different levels of light intensity. The rationing of the lighting installation is based on detailed studies of the observer’s visual performance depending on different lighting conditions. One of the main luminous parameters that can easily be measured objectively is illumination. Brightness as a function of illumination, the observer’s position and the spectral coefficient of the working surface reflection is more informative, but has some difficulty in measuring. There is a clear need to develop a system that would make it possible to uniquely assess the visual efficiency of a given spectral composition under certain observation conditions. It was decided to introduce the term equivalent brightness as the parameter of such a system. The difficulty of using the function Vek(λ,Lek) to calculate the equivalent brightness is the function’s dependence Vek(λ,Lek) on Lek. The aim of the study is to approximate the function of the relative spectral luminous efficiency in mesopathic regions by a set of standard CIE functions that do not depend on the value of equivalent luminosity. The calculation method Vek(λ,Lek) is proposed using only two normalized functions of the relative spectral radiation efficiency for day V(λ) and night V'(λ) vision. The use of such approximation function makes it possible to determine the equivalent brightness, which adequately reflects the level of visual perception under the conditions of ambient illumination, based on the photometric brightness of the light source. To calculate Vek(λ,Lek) we use the ICE recommended functions of relative spectral light efficiency for the twilight vision, which are based on the spectral composition of the blackbody radiation with a color temperature of 2042 K. The use of the developed methodology provides results that more accurately characterize the efficiency of light sources in outdoor lighting installations compared to the results of calculations obtained when using standard methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信