{"title":"深度神经网络的半监督训练策略","authors":"Matthew Gibson, G. Cook, P. Zhan","doi":"10.1109/ASRU.2017.8268919","DOIUrl":null,"url":null,"abstract":"Use of both manually and automatically labelled data for model training is referred to as semi-supervised training. While semi-supervised acoustic model training has been well-explored in the context of hidden Markov Gaussian mixture models (HMM-GMMs), the re-emergence of deep neural network (DNN) acoustic models has given rise to some novel approaches to semi-supervised DNN training. This paper investigates several different strategies for semi-supervised DNN training, including the so-called ‘shared hidden layer’ approach and the ‘knowledge distillation’ (or student-teacher) approach. Particular attention is paid to the differing behaviour of semi-supervised DNN training methods during the cross-entropy and sequence training phases of model building. Experimental results on our internal study dataset provide evidence that in a low-resource scenario the most effective semi-supervised training strategy is ‘naive CE’ (treating manually transcribed and automatically transcribed data identically during the cross entropy phase of training) followed by use of a shared hidden layer technique during sequence training.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semi-supervised training strategies for deep neural networks\",\"authors\":\"Matthew Gibson, G. Cook, P. Zhan\",\"doi\":\"10.1109/ASRU.2017.8268919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use of both manually and automatically labelled data for model training is referred to as semi-supervised training. While semi-supervised acoustic model training has been well-explored in the context of hidden Markov Gaussian mixture models (HMM-GMMs), the re-emergence of deep neural network (DNN) acoustic models has given rise to some novel approaches to semi-supervised DNN training. This paper investigates several different strategies for semi-supervised DNN training, including the so-called ‘shared hidden layer’ approach and the ‘knowledge distillation’ (or student-teacher) approach. Particular attention is paid to the differing behaviour of semi-supervised DNN training methods during the cross-entropy and sequence training phases of model building. Experimental results on our internal study dataset provide evidence that in a low-resource scenario the most effective semi-supervised training strategy is ‘naive CE’ (treating manually transcribed and automatically transcribed data identically during the cross entropy phase of training) followed by use of a shared hidden layer technique during sequence training.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised training strategies for deep neural networks
Use of both manually and automatically labelled data for model training is referred to as semi-supervised training. While semi-supervised acoustic model training has been well-explored in the context of hidden Markov Gaussian mixture models (HMM-GMMs), the re-emergence of deep neural network (DNN) acoustic models has given rise to some novel approaches to semi-supervised DNN training. This paper investigates several different strategies for semi-supervised DNN training, including the so-called ‘shared hidden layer’ approach and the ‘knowledge distillation’ (or student-teacher) approach. Particular attention is paid to the differing behaviour of semi-supervised DNN training methods during the cross-entropy and sequence training phases of model building. Experimental results on our internal study dataset provide evidence that in a low-resource scenario the most effective semi-supervised training strategy is ‘naive CE’ (treating manually transcribed and automatically transcribed data identically during the cross entropy phase of training) followed by use of a shared hidden layer technique during sequence training.