挖掘社交网络的目标广告

Wan-Shiou Yang, J. Dia, Hung-Chi Cheng, Hsing-Tzu Lin
{"title":"挖掘社交网络的目标广告","authors":"Wan-Shiou Yang, J. Dia, Hung-Chi Cheng, Hsing-Tzu Lin","doi":"10.1109/HICSS.2006.272","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a data mining framework that utilizes the concept of social network for the targeted advertising of products. This approach discovers the cohesive subgroups from customer’s social network which is derived from customer’s interaction data. Based on the set of cohesive subgroups, we infer the probabilities of customer’s liking a product category from transaction records. Utilizing such information, we construct a targeted advertising system. We evaluate the proposed approach by using real email logs and library-circulation data. The experimental results show that our approach yields better quality of advertisement.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":"{\"title\":\"Mining Social Networks for Targeted Advertising\",\"authors\":\"Wan-Shiou Yang, J. Dia, Hung-Chi Cheng, Hsing-Tzu Lin\",\"doi\":\"10.1109/HICSS.2006.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a data mining framework that utilizes the concept of social network for the targeted advertising of products. This approach discovers the cohesive subgroups from customer’s social network which is derived from customer’s interaction data. Based on the set of cohesive subgroups, we infer the probabilities of customer’s liking a product category from transaction records. Utilizing such information, we construct a targeted advertising system. We evaluate the proposed approach by using real email logs and library-circulation data. The experimental results show that our approach yields better quality of advertisement.\",\"PeriodicalId\":432250,\"journal\":{\"name\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"152\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2006.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

摘要

在本文中,我们提出了一个利用社交网络概念进行产品定向广告的数据挖掘框架。该方法从客户交互数据中提取客户社交网络中的内聚子群。基于一组内聚子组,我们从交易记录中推断出客户喜欢某一产品类别的概率。利用这些信息,我们构建一个有针对性的广告系统。我们通过使用真实的电子邮件日志和图书馆流通数据来评估所提出的方法。实验结果表明,该方法可以获得更好的广告质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Social Networks for Targeted Advertising
In this paper, we propose a data mining framework that utilizes the concept of social network for the targeted advertising of products. This approach discovers the cohesive subgroups from customer’s social network which is derived from customer’s interaction data. Based on the set of cohesive subgroups, we infer the probabilities of customer’s liking a product category from transaction records. Utilizing such information, we construct a targeted advertising system. We evaluate the proposed approach by using real email logs and library-circulation data. The experimental results show that our approach yields better quality of advertisement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信