基于RDF数据的OWL公理子类测试的可能性启发式优化计算

Rémi Felin, O. Corby, C. Faron-Zucker, A. Tettamanzi
{"title":"基于RDF数据的OWL公理子类测试的可能性启发式优化计算","authors":"Rémi Felin, O. Corby, C. Faron-Zucker, A. Tettamanzi","doi":"10.1109/WI-IAT55865.2022.00021","DOIUrl":null,"url":null,"abstract":"The growth of the semantic Web requires tools to manage data, make them available to humans and for a wide range of applications. In particular, tools dedicated to ontology management are a keystone for semantic Web applications. In this paper we consider a possibilistic framework and an evolutionary approach for ontology enrichment with OWL axioms. The assessment of candidate OWL axioms against an RDF knowledge graph requires a high computational cost, especially in terms of computation time (CPU), which may limit the applicability of the framework. To answer this problem, our contribution presented in this paper consists of (i) a multi-threading system to parallelize axiom assessment, (ii) a heuristic to avoid redundant computation and (iii) an optimization for SPARQL query chunking relying on an extension of the SPARQL 1.1 Federated Query standard. The results of a comparative evaluation show that our proposal significantly outperforms the original algorithm, enabling a significant reduction in computation time.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Computation of a Possibilistic Heuristic to Test OWL SubClassOf Axioms Against RDF Data\",\"authors\":\"Rémi Felin, O. Corby, C. Faron-Zucker, A. Tettamanzi\",\"doi\":\"10.1109/WI-IAT55865.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of the semantic Web requires tools to manage data, make them available to humans and for a wide range of applications. In particular, tools dedicated to ontology management are a keystone for semantic Web applications. In this paper we consider a possibilistic framework and an evolutionary approach for ontology enrichment with OWL axioms. The assessment of candidate OWL axioms against an RDF knowledge graph requires a high computational cost, especially in terms of computation time (CPU), which may limit the applicability of the framework. To answer this problem, our contribution presented in this paper consists of (i) a multi-threading system to parallelize axiom assessment, (ii) a heuristic to avoid redundant computation and (iii) an optimization for SPARQL query chunking relying on an extension of the SPARQL 1.1 Federated Query standard. The results of a comparative evaluation show that our proposal significantly outperforms the original algorithm, enabling a significant reduction in computation time.\",\"PeriodicalId\":345445,\"journal\":{\"name\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT55865.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义Web的发展需要工具来管理数据,使它们可供人类使用并用于广泛的应用程序。特别是,专门用于本体管理的工具是语义Web应用程序的基石。本文提出了一种利用OWL公理进行本体丰富的可能性框架和进化方法。根据RDF知识图评估候选OWL公理需要很高的计算成本,特别是在计算时间(CPU)方面,这可能会限制框架的适用性。为了回答这个问题,我们在本文中提出的贡献包括:(i)并行化公理评估的多线程系统,(ii)避免冗余计算的启发式方法,以及(iii)依赖于SPARQL 1.1联邦查询标准扩展的SPARQL查询分块优化。比较评估的结果表明,我们的建议明显优于原始算法,使计算时间显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Computation of a Possibilistic Heuristic to Test OWL SubClassOf Axioms Against RDF Data
The growth of the semantic Web requires tools to manage data, make them available to humans and for a wide range of applications. In particular, tools dedicated to ontology management are a keystone for semantic Web applications. In this paper we consider a possibilistic framework and an evolutionary approach for ontology enrichment with OWL axioms. The assessment of candidate OWL axioms against an RDF knowledge graph requires a high computational cost, especially in terms of computation time (CPU), which may limit the applicability of the framework. To answer this problem, our contribution presented in this paper consists of (i) a multi-threading system to parallelize axiom assessment, (ii) a heuristic to avoid redundant computation and (iii) an optimization for SPARQL query chunking relying on an extension of the SPARQL 1.1 Federated Query standard. The results of a comparative evaluation show that our proposal significantly outperforms the original algorithm, enabling a significant reduction in computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信