螺旋桨水对推进式无人机水平尾翼空气动力学的影响

Hady Benyamen, Aaron McKinnis, S. Keshmiri
{"title":"螺旋桨水对推进式无人机水平尾翼空气动力学的影响","authors":"Hady Benyamen, Aaron McKinnis, S. Keshmiri","doi":"10.1109/AERO47225.2020.9172481","DOIUrl":null,"url":null,"abstract":"In this paper, the propwash phenomenon for pusher configuration unmanned aerial systems (UASs) is studied. The SkyHunter UAS has the propeller placed aft of the fuselage and in front of the horizontal tail with no offset from the zero lift plane. Thus, the propeller slipstream directly flows over the horizontal tail affecting its aerodynamics. To validate the physics based model developed for propwash impacts and to quantify the effects of propwash, the SkyHunter UAS was equipped with an extra pitot tube. The first pitot tube was placed at the nose of the aircraft where the air is undisturbed and it was measuring the aircraft's velocity. The second pitot tube was placed at different locations on the horizontal tail and three flight tests were conducted. Flight test data showed that the current configuration of the SkyHunter: (A) has large variations in the horizontal tail dynamic pressure ratio along the span of the horizontal tail. (B) had the dynamic pressure ratio higher than 1.7 in two of the three investigated locations along the span of the horizontal tail. This suggests that the theoretical estimate of the dynamic pressure ratio (which is 0.93) may be an under estimation. (C) The dynamic pressure ratio varied with time during flight. A change in the horizontal tail dynamic pressure ratio directly leads to a shift in the location of the aerodynamic center of an aircraft as well as changes in the stability and control derivatives of an aircraft. The implication of these changes in small UASs can be significant since they affect the aircraft longitudinal stability, trim elevator, and flight characteristics. In order to mitigate such changes during flight, a redesign was made to the original empennage design where is an offset was added between the zero lift plane and the aerodynamic center of the horizontal tail. This redesign intends to move the horizontal tail above (and away from) the propeller slipstream. Manufacturing of the redesigned horizontal tail was completed recently and it was flight tested. Flight test data from the new design show that the new design successfully mitigates the effects of the propwash.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Propwash on Horizontal Tail Aerodynamics of Pusher UASs\",\"authors\":\"Hady Benyamen, Aaron McKinnis, S. Keshmiri\",\"doi\":\"10.1109/AERO47225.2020.9172481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the propwash phenomenon for pusher configuration unmanned aerial systems (UASs) is studied. The SkyHunter UAS has the propeller placed aft of the fuselage and in front of the horizontal tail with no offset from the zero lift plane. Thus, the propeller slipstream directly flows over the horizontal tail affecting its aerodynamics. To validate the physics based model developed for propwash impacts and to quantify the effects of propwash, the SkyHunter UAS was equipped with an extra pitot tube. The first pitot tube was placed at the nose of the aircraft where the air is undisturbed and it was measuring the aircraft's velocity. The second pitot tube was placed at different locations on the horizontal tail and three flight tests were conducted. Flight test data showed that the current configuration of the SkyHunter: (A) has large variations in the horizontal tail dynamic pressure ratio along the span of the horizontal tail. (B) had the dynamic pressure ratio higher than 1.7 in two of the three investigated locations along the span of the horizontal tail. This suggests that the theoretical estimate of the dynamic pressure ratio (which is 0.93) may be an under estimation. (C) The dynamic pressure ratio varied with time during flight. A change in the horizontal tail dynamic pressure ratio directly leads to a shift in the location of the aerodynamic center of an aircraft as well as changes in the stability and control derivatives of an aircraft. The implication of these changes in small UASs can be significant since they affect the aircraft longitudinal stability, trim elevator, and flight characteristics. In order to mitigate such changes during flight, a redesign was made to the original empennage design where is an offset was added between the zero lift plane and the aerodynamic center of the horizontal tail. This redesign intends to move the horizontal tail above (and away from) the propeller slipstream. Manufacturing of the redesigned horizontal tail was completed recently and it was flight tested. Flight test data from the new design show that the new design successfully mitigates the effects of the propwash.\",\"PeriodicalId\":114560,\"journal\":{\"name\":\"2020 IEEE Aerospace Conference\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO47225.2020.9172481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了推进式无人机系统的螺旋桨现象。天猎无人机(SkyHunter UAS)的螺旋桨放置在机身尾部和水平尾翼前面,与零升力飞机没有偏移。因此,螺旋桨滑流直接流过水平尾翼,影响其空气动力学。为了验证proprowash冲击的物理模型,并量化proprowash的影响,SkyHunter无人机配备了一个额外的皮托管。第一个皮托管被放置在飞机的机头,那里空气不受干扰,它用来测量飞机的速度。第二个皮托管放置在水平尾翼的不同位置,并进行了三次飞行试验。飞行试验数据表明,目前的天猎者构型:(A)水平尾翼动压比沿水平尾翼跨度变化较大。(B)在水平尾跨的三个调查位置中,有两个位置的动压比大于1.7。这表明,理论估计的动压比(0.93)可能是一个估计不足。(C)动压比随飞行时间的变化。水平尾动压比的变化直接导致飞机气动中心位置的变化,以及飞机的稳定性和控制导数的变化。这些变化对小型无人机的影响是显著的,因为它们会影响飞机的纵向稳定性、纵倾升降舵和飞行特性。为了减轻飞行过程中的这些变化,对原有的尾翼设计进行了重新设计,在零升力平面和水平尾翼的气动中心之间增加了一个偏移量。这种重新设计的目的是移动水平尾以上(并远离)螺旋桨滑流。重新设计的水平尾翼的制造最近完成,并进行了飞行测试。新设计的飞行试验数据表明,新设计成功地减轻了螺旋桨的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Propwash on Horizontal Tail Aerodynamics of Pusher UASs
In this paper, the propwash phenomenon for pusher configuration unmanned aerial systems (UASs) is studied. The SkyHunter UAS has the propeller placed aft of the fuselage and in front of the horizontal tail with no offset from the zero lift plane. Thus, the propeller slipstream directly flows over the horizontal tail affecting its aerodynamics. To validate the physics based model developed for propwash impacts and to quantify the effects of propwash, the SkyHunter UAS was equipped with an extra pitot tube. The first pitot tube was placed at the nose of the aircraft where the air is undisturbed and it was measuring the aircraft's velocity. The second pitot tube was placed at different locations on the horizontal tail and three flight tests were conducted. Flight test data showed that the current configuration of the SkyHunter: (A) has large variations in the horizontal tail dynamic pressure ratio along the span of the horizontal tail. (B) had the dynamic pressure ratio higher than 1.7 in two of the three investigated locations along the span of the horizontal tail. This suggests that the theoretical estimate of the dynamic pressure ratio (which is 0.93) may be an under estimation. (C) The dynamic pressure ratio varied with time during flight. A change in the horizontal tail dynamic pressure ratio directly leads to a shift in the location of the aerodynamic center of an aircraft as well as changes in the stability and control derivatives of an aircraft. The implication of these changes in small UASs can be significant since they affect the aircraft longitudinal stability, trim elevator, and flight characteristics. In order to mitigate such changes during flight, a redesign was made to the original empennage design where is an offset was added between the zero lift plane and the aerodynamic center of the horizontal tail. This redesign intends to move the horizontal tail above (and away from) the propeller slipstream. Manufacturing of the redesigned horizontal tail was completed recently and it was flight tested. Flight test data from the new design show that the new design successfully mitigates the effects of the propwash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信