对称矩阵的可对称广义逆

J. Hearon
{"title":"对称矩阵的可对称广义逆","authors":"J. Hearon","doi":"10.6028/JRES.071B.031","DOIUrl":null,"url":null,"abstract":"The matrix A is said to be symmetri zable by V when V is positive definite and AV is hermitian. Several le mmas regard ing symmetrizability are given. For three classes of generalized inverses it is s hown that if A is s mmetrizable by V the re exists a generali zed inverse in each class which is sy mmetrizable by V. The Moore·Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is also symmetrizable by V if and only if the matrix and the pseudo-inverse com mute.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Symmetrizable Generalized Inverses of Symmetrizable Matrices\",\"authors\":\"J. Hearon\",\"doi\":\"10.6028/JRES.071B.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matrix A is said to be symmetri zable by V when V is positive definite and AV is hermitian. Several le mmas regard ing symmetrizability are given. For three classes of generalized inverses it is s hown that if A is s mmetrizable by V the re exists a generali zed inverse in each class which is sy mmetrizable by V. The Moore·Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is also symmetrizable by V if and only if the matrix and the pseudo-inverse com mute.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.071B.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.071B.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当V是正定矩阵而AV是厄米矩阵时,我们说矩阵A是V对称的。给出了关于对称性的几个基本定理。对于3类广义逆,如果A可被V度量,则在每一类中都存在一个可被V度量的广义逆。一个可被V对称的矩阵的Moore·Penrose逆(或伪逆)也可被V对称,当且仅当矩阵与伪逆相合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetrizable Generalized Inverses of Symmetrizable Matrices
The matrix A is said to be symmetri zable by V when V is positive definite and AV is hermitian. Several le mmas regard ing symmetrizability are given. For three classes of generalized inverses it is s hown that if A is s mmetrizable by V the re exists a generali zed inverse in each class which is sy mmetrizable by V. The Moore·Penrose inverse (or pseudo-inverse) of a matrix symmetrizable by V is also symmetrizable by V if and only if the matrix and the pseudo-inverse com mute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信