用共现分析学习情感

Nirach Romyen, Sureeporn Nualnim, Maleerat Maliyaem, H. Unger
{"title":"用共现分析学习情感","authors":"Nirach Romyen, Sureeporn Nualnim, Maleerat Maliyaem, H. Unger","doi":"10.1109/RI2C51727.2021.9559782","DOIUrl":null,"url":null,"abstract":"As part of natural language processing, sentiment analysis intends to investigate the author's emotions while writing a given text. This paper proposes a new method that uses a co-occurrence graph that can be automatically extended in a background reading (and learning) process, when a person's additional text source is available. The proposed method applies the concepts of PageRank to find the sentiment value of a considered node depending on the sentiment value of predecessor nodes that point to it and iteratively process those values in the same manner. The experiment results showed that 1) the methods described converge and 2) from a few, initially labelled positive (good) and negative (bad) words precise sentiment values for other words can be obtained, which corresponds to the authors emotions.","PeriodicalId":422981,"journal":{"name":"2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C)","volume":"20 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Sentiments using Co-occurrence Analysis\",\"authors\":\"Nirach Romyen, Sureeporn Nualnim, Maleerat Maliyaem, H. Unger\",\"doi\":\"10.1109/RI2C51727.2021.9559782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of natural language processing, sentiment analysis intends to investigate the author's emotions while writing a given text. This paper proposes a new method that uses a co-occurrence graph that can be automatically extended in a background reading (and learning) process, when a person's additional text source is available. The proposed method applies the concepts of PageRank to find the sentiment value of a considered node depending on the sentiment value of predecessor nodes that point to it and iteratively process those values in the same manner. The experiment results showed that 1) the methods described converge and 2) from a few, initially labelled positive (good) and negative (bad) words precise sentiment values for other words can be obtained, which corresponds to the authors emotions.\",\"PeriodicalId\":422981,\"journal\":{\"name\":\"2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C)\",\"volume\":\"20 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C51727.2021.9559782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C51727.2021.9559782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为自然语言处理的一部分,情感分析旨在研究作者在撰写给定文本时的情绪。本文提出了一种新的方法,该方法使用共现图,当一个人的额外文本源可用时,该图可以在后台阅读(和学习)过程中自动扩展。该方法应用PageRank的概念,根据指向该节点的前一个节点的情感值来查找所考虑节点的情感值,并以相同的方式迭代处理这些值。实验结果表明:1)所描述的方法是收敛的;2)从几个最初标记为积极(好)和消极(坏)的单词中,可以得到其他单词的精确情感值,这与作者的情绪相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Sentiments using Co-occurrence Analysis
As part of natural language processing, sentiment analysis intends to investigate the author's emotions while writing a given text. This paper proposes a new method that uses a co-occurrence graph that can be automatically extended in a background reading (and learning) process, when a person's additional text source is available. The proposed method applies the concepts of PageRank to find the sentiment value of a considered node depending on the sentiment value of predecessor nodes that point to it and iteratively process those values in the same manner. The experiment results showed that 1) the methods described converge and 2) from a few, initially labelled positive (good) and negative (bad) words precise sentiment values for other words can be obtained, which corresponds to the authors emotions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信