基于URL分类的数据提取抓取结果页面

Tiezheng Nie, Zhenhua Wang, Yue Kou, Rui Zhang
{"title":"基于URL分类的数据提取抓取结果页面","authors":"Tiezheng Nie, Zhenhua Wang, Yue Kou, Rui Zhang","doi":"10.1109/WISA.2010.14","DOIUrl":null,"url":null,"abstract":"In Web database integration, crawling data pages is important for data extraction. The fact that data are contained by multiple result pages increases the difficulty of accessing data for integration. Thus, it is necessary to accurately and automatically crawl query result pages from Web database. To address this problem, we propose a novel approach based on URL classification to effectively identify result pages. In our approach, we compute the similarity between URLs of hyperlinks in result pages and classify them into four categories. Each category maps to a set of similar web pages, which separate result pages from others. Then, we use the page probing method to verify the correctness of classification and improve the accuracy of crawled result pages. The experimental result demonstrates that our approach is effective for identifying the collection of result pages in Web database, and can improve the quality and efficiency of data extraction.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Crawling Result Pages for Data Extraction Based on URL Classification\",\"authors\":\"Tiezheng Nie, Zhenhua Wang, Yue Kou, Rui Zhang\",\"doi\":\"10.1109/WISA.2010.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Web database integration, crawling data pages is important for data extraction. The fact that data are contained by multiple result pages increases the difficulty of accessing data for integration. Thus, it is necessary to accurately and automatically crawl query result pages from Web database. To address this problem, we propose a novel approach based on URL classification to effectively identify result pages. In our approach, we compute the similarity between URLs of hyperlinks in result pages and classify them into four categories. Each category maps to a set of similar web pages, which separate result pages from others. Then, we use the page probing method to verify the correctness of classification and improve the accuracy of crawled result pages. The experimental result demonstrates that our approach is effective for identifying the collection of result pages in Web database, and can improve the quality and efficiency of data extraction.\",\"PeriodicalId\":122827,\"journal\":{\"name\":\"2010 Seventh Web Information Systems and Applications Conference\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Seventh Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2010.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在Web数据库集成中,抓取数据页面对于数据提取非常重要。数据包含在多个结果页面中这一事实增加了访问数据进行集成的难度。因此,需要准确、自动地从Web数据库中抓取查询结果页面。为了解决这个问题,我们提出了一种基于URL分类的新方法来有效地识别结果页面。在我们的方法中,我们计算结果页面中超链接的url之间的相似性,并将它们分为四类。每个类别都映射到一组相似的网页,这些网页将结果页面与其他页面分开。然后,我们使用页面探测方法来验证分类的正确性,提高抓取结果页面的准确性。实验结果表明,该方法可以有效地识别Web数据库中结果页面的集合,提高数据提取的质量和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crawling Result Pages for Data Extraction Based on URL Classification
In Web database integration, crawling data pages is important for data extraction. The fact that data are contained by multiple result pages increases the difficulty of accessing data for integration. Thus, it is necessary to accurately and automatically crawl query result pages from Web database. To address this problem, we propose a novel approach based on URL classification to effectively identify result pages. In our approach, we compute the similarity between URLs of hyperlinks in result pages and classify them into four categories. Each category maps to a set of similar web pages, which separate result pages from others. Then, we use the page probing method to verify the correctness of classification and improve the accuracy of crawled result pages. The experimental result demonstrates that our approach is effective for identifying the collection of result pages in Web database, and can improve the quality and efficiency of data extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信