{"title":"超音速舵颤振实验模型的验证与验证","authors":"Ju Qiu, Chaofeng Liu","doi":"10.5772/intechopen.98384","DOIUrl":null,"url":null,"abstract":"The abrupt and explosive nature of flutter is a dangerous failure mode, which is closely related to the structural modes. In this work, the principal goal of the study is to produce the model, which is used very accurately for flutter predictions. Mode correctness of the model can correct the test deflects by the optimization technique----Sequential Quadratic Programming (SQP). The optimization of two finite element models for two flight conditions, transonic and supersonic speeds, had the different objectives which were defined by the nonlinear and linear eigenvector errors. The first and second frequencies were taken as constraints. And the stiffness of the rotation shaft was also restricted to some limits. The stiffness of the rudder axle was defined as design variables. Experiments were performed for considering springs both in plunge and in torsion of the rudder shaft. When the comparison between experimental information and analyzed calculations is described, generally excellent agreement is obtained between experimental and calculated results, and aeroelastic instability is predicted that agrees with experimental observations. Comments are also given concerning improvements of the flutter speed to be made to the model with changing stiffness of the rudder axle. Most importantly, V&V Method is used to provide the confidence in the results from simulation in this paper. Firstly, it introduces experimental data from Ground Vibration Test to build up or modify the Finite Element Model, during the Verification phase, which makes simulated models closer to the real world and guarantees satisfaction of final computed results to requirements, such as airworthiness. Secondly, the flutter consequence is validated by wind tunnel test. These enhancements could find potential applications in industrial problems.","PeriodicalId":340860,"journal":{"name":"Optimization Problems in Engineering [Working Title]","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Verification and Validation of Supersonic Flutter of Rudder Model for Experiment\",\"authors\":\"Ju Qiu, Chaofeng Liu\",\"doi\":\"10.5772/intechopen.98384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abrupt and explosive nature of flutter is a dangerous failure mode, which is closely related to the structural modes. In this work, the principal goal of the study is to produce the model, which is used very accurately for flutter predictions. Mode correctness of the model can correct the test deflects by the optimization technique----Sequential Quadratic Programming (SQP). The optimization of two finite element models for two flight conditions, transonic and supersonic speeds, had the different objectives which were defined by the nonlinear and linear eigenvector errors. The first and second frequencies were taken as constraints. And the stiffness of the rotation shaft was also restricted to some limits. The stiffness of the rudder axle was defined as design variables. Experiments were performed for considering springs both in plunge and in torsion of the rudder shaft. When the comparison between experimental information and analyzed calculations is described, generally excellent agreement is obtained between experimental and calculated results, and aeroelastic instability is predicted that agrees with experimental observations. Comments are also given concerning improvements of the flutter speed to be made to the model with changing stiffness of the rudder axle. Most importantly, V&V Method is used to provide the confidence in the results from simulation in this paper. Firstly, it introduces experimental data from Ground Vibration Test to build up or modify the Finite Element Model, during the Verification phase, which makes simulated models closer to the real world and guarantees satisfaction of final computed results to requirements, such as airworthiness. Secondly, the flutter consequence is validated by wind tunnel test. These enhancements could find potential applications in industrial problems.\",\"PeriodicalId\":340860,\"journal\":{\"name\":\"Optimization Problems in Engineering [Working Title]\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Problems in Engineering [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.98384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Problems in Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.98384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verification and Validation of Supersonic Flutter of Rudder Model for Experiment
The abrupt and explosive nature of flutter is a dangerous failure mode, which is closely related to the structural modes. In this work, the principal goal of the study is to produce the model, which is used very accurately for flutter predictions. Mode correctness of the model can correct the test deflects by the optimization technique----Sequential Quadratic Programming (SQP). The optimization of two finite element models for two flight conditions, transonic and supersonic speeds, had the different objectives which were defined by the nonlinear and linear eigenvector errors. The first and second frequencies were taken as constraints. And the stiffness of the rotation shaft was also restricted to some limits. The stiffness of the rudder axle was defined as design variables. Experiments were performed for considering springs both in plunge and in torsion of the rudder shaft. When the comparison between experimental information and analyzed calculations is described, generally excellent agreement is obtained between experimental and calculated results, and aeroelastic instability is predicted that agrees with experimental observations. Comments are also given concerning improvements of the flutter speed to be made to the model with changing stiffness of the rudder axle. Most importantly, V&V Method is used to provide the confidence in the results from simulation in this paper. Firstly, it introduces experimental data from Ground Vibration Test to build up or modify the Finite Element Model, during the Verification phase, which makes simulated models closer to the real world and guarantees satisfaction of final computed results to requirements, such as airworthiness. Secondly, the flutter consequence is validated by wind tunnel test. These enhancements could find potential applications in industrial problems.