基于模型的评价与决策的数据收集策略优化

R. Cain, A. Moorsel
{"title":"基于模型的评价与决策的数据收集策略优化","authors":"R. Cain, A. Moorsel","doi":"10.1109/DSN.2012.6263947","DOIUrl":null,"url":null,"abstract":"Probabilistic and stochastic models are routinely used in performance, dependability and security evaluation, and determining appropriate values for model parameters is a long-standing problem in the practical use of such models. With the increasing emphasis on human aspects and business considerations, data collection to estimate parameter values often gets prohibitively expensive, since it may involve questionnaires, costly audits or additional monitoring and processing. In this paper we articulate a set of optimization problems related to data collection, and provide efficient algorithms to determine the optimal data collection strategy for a model. The main idea is to model the uncertainty of data sources and determine its influence on output accuracy by solving the model. This approach is particularly natural for data sources that rely on sampling, such as questionnaires or monitoring, since uncertainty can be expressed using the central limit theorem. We pay special attention to the efficiency of our optimization algorithm, using ideas inspired by importance sampling to derive optimal strategies for a range of parameter values from a single set of experiments.","PeriodicalId":236791,"journal":{"name":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimization of data collection strategies for model-based evaluation and decision-making\",\"authors\":\"R. Cain, A. Moorsel\",\"doi\":\"10.1109/DSN.2012.6263947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic and stochastic models are routinely used in performance, dependability and security evaluation, and determining appropriate values for model parameters is a long-standing problem in the practical use of such models. With the increasing emphasis on human aspects and business considerations, data collection to estimate parameter values often gets prohibitively expensive, since it may involve questionnaires, costly audits or additional monitoring and processing. In this paper we articulate a set of optimization problems related to data collection, and provide efficient algorithms to determine the optimal data collection strategy for a model. The main idea is to model the uncertainty of data sources and determine its influence on output accuracy by solving the model. This approach is particularly natural for data sources that rely on sampling, such as questionnaires or monitoring, since uncertainty can be expressed using the central limit theorem. We pay special attention to the efficiency of our optimization algorithm, using ideas inspired by importance sampling to derive optimal strategies for a range of parameter values from a single set of experiments.\",\"PeriodicalId\":236791,\"journal\":{\"name\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2012.6263947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2012.6263947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

概率和随机模型通常用于性能、可靠性和安全性评估,在实际使用这些模型时,确定模型参数的适当值是一个长期存在的问题。随着对人的方面和业务考虑因素的日益重视,用于估计参数值的数据收集通常变得非常昂贵,因为它可能涉及问卷调查、昂贵的审计或额外的监视和处理。在本文中,我们阐述了一组与数据收集相关的优化问题,并提供了有效的算法来确定模型的最佳数据收集策略。其主要思想是对数据源的不确定性进行建模,并通过求解模型来确定其对输出精度的影响。这种方法对于依赖于抽样的数据源(如问卷调查或监测)特别自然,因为不确定性可以使用中心极限定理表示。我们特别关注优化算法的效率,利用重要性抽样的启发思想,从一组实验中得出一系列参数值的最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of data collection strategies for model-based evaluation and decision-making
Probabilistic and stochastic models are routinely used in performance, dependability and security evaluation, and determining appropriate values for model parameters is a long-standing problem in the practical use of such models. With the increasing emphasis on human aspects and business considerations, data collection to estimate parameter values often gets prohibitively expensive, since it may involve questionnaires, costly audits or additional monitoring and processing. In this paper we articulate a set of optimization problems related to data collection, and provide efficient algorithms to determine the optimal data collection strategy for a model. The main idea is to model the uncertainty of data sources and determine its influence on output accuracy by solving the model. This approach is particularly natural for data sources that rely on sampling, such as questionnaires or monitoring, since uncertainty can be expressed using the central limit theorem. We pay special attention to the efficiency of our optimization algorithm, using ideas inspired by importance sampling to derive optimal strategies for a range of parameter values from a single set of experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信