退化文档图像的内容定向增强

DAR '12 Pub Date : 2012-12-16 DOI:10.1145/2432553.2432564
Sangeet Aggarwal, Sanjeev Kumar, Ritu Garg, S. Chaudhury
{"title":"退化文档图像的内容定向增强","authors":"Sangeet Aggarwal, Sanjeev Kumar, Ritu Garg, S. Chaudhury","doi":"10.1145/2432553.2432564","DOIUrl":null,"url":null,"abstract":"Most of the document pre-processing techniques are parameter dependent. In this paper, we present a novel framework that learns optimal parameters, depending on the nature of the document image content for binarization and text/graphics segmentation. The learning problem has been formulated as an optimization problem using EM algorithm to adaptively learn optimal parameters. Experimental results have established the effectiveness of our approach.","PeriodicalId":410986,"journal":{"name":"DAR '12","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content directed enhancement of degraded document images\",\"authors\":\"Sangeet Aggarwal, Sanjeev Kumar, Ritu Garg, S. Chaudhury\",\"doi\":\"10.1145/2432553.2432564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the document pre-processing techniques are parameter dependent. In this paper, we present a novel framework that learns optimal parameters, depending on the nature of the document image content for binarization and text/graphics segmentation. The learning problem has been formulated as an optimization problem using EM algorithm to adaptively learn optimal parameters. Experimental results have established the effectiveness of our approach.\",\"PeriodicalId\":410986,\"journal\":{\"name\":\"DAR '12\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAR '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2432553.2432564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAR '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2432553.2432564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大多数文档预处理技术都是参数相关的。在本文中,我们提出了一个新的框架,该框架根据文档图像内容的性质学习最优参数,用于二值化和文本/图形分割。学习问题被表述为一个利用EM算法自适应学习最优参数的优化问题。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content directed enhancement of degraded document images
Most of the document pre-processing techniques are parameter dependent. In this paper, we present a novel framework that learns optimal parameters, depending on the nature of the document image content for binarization and text/graphics segmentation. The learning problem has been formulated as an optimization problem using EM algorithm to adaptively learn optimal parameters. Experimental results have established the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信