用离散算子控制种群多样性的遗传算法实验

A. Strzezek, Ludwik Trammer, M. Sydow
{"title":"用离散算子控制种群多样性的遗传算法实验","authors":"A. Strzezek, Ludwik Trammer, M. Sydow","doi":"10.15439/2015F411","DOIUrl":null,"url":null,"abstract":"We present diverGene - a novel, diversity-aware population selection operator for genetic algorithm - to be used especially for particularly complex and multi-criteria optimisation problems. Genetic algorithm is one of the most known evolutionary algorithms for solving hard optimisation problems. Many attempts have been made to improve its convergence rate and quality of the result. In this paper we propose a novel extension of the selection operator that makes it possible to control the level of diversity in the population. We discuss its theoretical background, including its computational hardness and propose an efficient way of computing it. The approach is implemented and tested on three hard optimisation problems: Knapsack Problem, Travelling Salesman Problem and a relatively new Travelling Thief Problem that might be viewed as the composition of the latter two. We report experimental results that seem to indicate that the novel approach has a potential to improve the quality of the results for some hard optimisation problems.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DiverGene: Experiments on controlling population diversity in genetic algorithm with a dispersion operator\",\"authors\":\"A. Strzezek, Ludwik Trammer, M. Sydow\",\"doi\":\"10.15439/2015F411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present diverGene - a novel, diversity-aware population selection operator for genetic algorithm - to be used especially for particularly complex and multi-criteria optimisation problems. Genetic algorithm is one of the most known evolutionary algorithms for solving hard optimisation problems. Many attempts have been made to improve its convergence rate and quality of the result. In this paper we propose a novel extension of the selection operator that makes it possible to control the level of diversity in the population. We discuss its theoretical background, including its computational hardness and propose an efficient way of computing it. The approach is implemented and tested on three hard optimisation problems: Knapsack Problem, Travelling Salesman Problem and a relatively new Travelling Thief Problem that might be viewed as the composition of the latter two. We report experimental results that seem to indicate that the novel approach has a potential to improve the quality of the results for some hard optimisation problems.\",\"PeriodicalId\":276884,\"journal\":{\"name\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2015F411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了diverGene -一种新颖的,多样性意识的种群选择算子,用于遗传算法-特别用于特别复杂和多标准的优化问题。遗传算法是解决难优化问题的最著名的进化算法之一。为了提高其收敛速度和结果质量,人们做了许多尝试。在本文中,我们提出了一种新的选择算子的扩展,使得控制种群的多样性水平成为可能。我们讨论了它的理论背景,包括它的计算难度,并提出了一种有效的计算方法。该方法在三个硬优化问题上实现和测试:背包问题,旅行推销员问题和一个相对较新的旅行小偷问题,可能被视为后两者的组合。我们报告的实验结果似乎表明,这种新方法有可能提高一些硬优化问题的结果质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DiverGene: Experiments on controlling population diversity in genetic algorithm with a dispersion operator
We present diverGene - a novel, diversity-aware population selection operator for genetic algorithm - to be used especially for particularly complex and multi-criteria optimisation problems. Genetic algorithm is one of the most known evolutionary algorithms for solving hard optimisation problems. Many attempts have been made to improve its convergence rate and quality of the result. In this paper we propose a novel extension of the selection operator that makes it possible to control the level of diversity in the population. We discuss its theoretical background, including its computational hardness and propose an efficient way of computing it. The approach is implemented and tested on three hard optimisation problems: Knapsack Problem, Travelling Salesman Problem and a relatively new Travelling Thief Problem that might be viewed as the composition of the latter two. We report experimental results that seem to indicate that the novel approach has a potential to improve the quality of the results for some hard optimisation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信