利用生物声纳进行自然地标跟踪的机器人导航

Maosen Wang, H. Tamimi, A. Zell
{"title":"利用生物声纳进行自然地标跟踪的机器人导航","authors":"Maosen Wang, H. Tamimi, A. Zell","doi":"10.1109/CIRA.2005.1554246","DOIUrl":null,"url":null,"abstract":"A biosonar based mobile robot navigation system is presented for the natural landmark classification using acoustic image matching. The aim of this approach is to take advantage of the perceived properties of bats' prey and landmark identification mechanisms for mobile robots' tracking of natural landmarks. Recognizing natural landmarks like trees through sequential echolocation and acoustic image analyzing allows mobile robot to update its location in the natural environment. In this work, a working implementation of the biosonar system on a mobile robot is shown. It collects sequential echoes to produce acoustic images through digital signal processing (DSP), then compresses images with discrete cosine transform or pyramid algorithm. Fast normalized cross correlation (FNCC) and kernel principal component analysis (KPCA) are respectively used to make the final classification. Experimental result indicates that a mobile robot can achieve the ability of natural landmark classification only based on biomemetic sonar, the topological congruency of the relational structure with cross correlation in acoustic images is reliable in time domain, while the kernel principle component analysis based classification is robust in frequency domain and demands fewer echolocation for landmark classification.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robot navigation using biosonar for natural landmark tracking\",\"authors\":\"Maosen Wang, H. Tamimi, A. Zell\",\"doi\":\"10.1109/CIRA.2005.1554246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A biosonar based mobile robot navigation system is presented for the natural landmark classification using acoustic image matching. The aim of this approach is to take advantage of the perceived properties of bats' prey and landmark identification mechanisms for mobile robots' tracking of natural landmarks. Recognizing natural landmarks like trees through sequential echolocation and acoustic image analyzing allows mobile robot to update its location in the natural environment. In this work, a working implementation of the biosonar system on a mobile robot is shown. It collects sequential echoes to produce acoustic images through digital signal processing (DSP), then compresses images with discrete cosine transform or pyramid algorithm. Fast normalized cross correlation (FNCC) and kernel principal component analysis (KPCA) are respectively used to make the final classification. Experimental result indicates that a mobile robot can achieve the ability of natural landmark classification only based on biomemetic sonar, the topological congruency of the relational structure with cross correlation in acoustic images is reliable in time domain, while the kernel principle component analysis based classification is robust in frequency domain and demands fewer echolocation for landmark classification.\",\"PeriodicalId\":162553,\"journal\":{\"name\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2005.1554246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于生物声纳的移动机器人导航系统,利用声图像匹配方法对自然地标进行分类。该方法的目的是利用蝙蝠对猎物的感知特性和地标识别机制来实现移动机器人对自然地标的跟踪。通过连续回声定位和声学图像分析来识别树木等自然地标,使移动机器人能够更新其在自然环境中的位置。在这项工作中,展示了生物声纳系统在移动机器人上的工作实现。它通过数字信号处理(DSP)采集序列回波生成声学图像,然后用离散余弦变换或金字塔算法对图像进行压缩。最后分别采用快速归一化互相关(FNCC)和核主成分分析(KPCA)进行分类。实验结果表明,移动机器人仅基于仿生声呐就能实现自然地标分类能力,声图像中相互关联的关系结构拓扑一致性在时域上是可靠的,而基于核主成分分析的分类在频域上是鲁棒的,对地标分类需要较少的回声定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot navigation using biosonar for natural landmark tracking
A biosonar based mobile robot navigation system is presented for the natural landmark classification using acoustic image matching. The aim of this approach is to take advantage of the perceived properties of bats' prey and landmark identification mechanisms for mobile robots' tracking of natural landmarks. Recognizing natural landmarks like trees through sequential echolocation and acoustic image analyzing allows mobile robot to update its location in the natural environment. In this work, a working implementation of the biosonar system on a mobile robot is shown. It collects sequential echoes to produce acoustic images through digital signal processing (DSP), then compresses images with discrete cosine transform or pyramid algorithm. Fast normalized cross correlation (FNCC) and kernel principal component analysis (KPCA) are respectively used to make the final classification. Experimental result indicates that a mobile robot can achieve the ability of natural landmark classification only based on biomemetic sonar, the topological congruency of the relational structure with cross correlation in acoustic images is reliable in time domain, while the kernel principle component analysis based classification is robust in frequency domain and demands fewer echolocation for landmark classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信