基于nas模型委员会

B. S. Sette, L. C. Silva, Fernando R. Zagatt, L. N. S. Silva, D. Lucrédio, Helena de Medeiros Caseli, Diego Furtado Silva
{"title":"基于nas模型委员会","authors":"B. S. Sette, L. C. Silva, Fernando R. Zagatt, L. N. S. Silva, D. Lucrédio, Helena de Medeiros Caseli, Diego Furtado Silva","doi":"10.1109/IJCNN52387.2021.9533446","DOIUrl":null,"url":null,"abstract":"Network Architecture Search (NAS) has achieved impressive results and generated models comparable with humans' classifications. Automating the definition of a neural architecture reduces the need for expert work efforts and mitigates human bias from architecture design. NAS techniques usually consist of an algorithm to search for the best architecture in a predetermined space of parameters or functions. Due to the number of deep neural architectures' parameters, this search space includes millions of parameters, which makes NAS a cost procedure and may lead the search to overfit the training set. To reduce NAS search spaces' complexity and still obtain competitive results, we propose CoNAS, a committee of NAS-based models, by restricting the search spaces to perform Differentiable ARchiTecture Search (DARTS). Our results point to improved accuracy over DARTS on CIFAR-10, training the networks from scratch. and Imagnette, using a transfer learning approach.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Committee of NAS-based models\",\"authors\":\"B. S. Sette, L. C. Silva, Fernando R. Zagatt, L. N. S. Silva, D. Lucrédio, Helena de Medeiros Caseli, Diego Furtado Silva\",\"doi\":\"10.1109/IJCNN52387.2021.9533446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Architecture Search (NAS) has achieved impressive results and generated models comparable with humans' classifications. Automating the definition of a neural architecture reduces the need for expert work efforts and mitigates human bias from architecture design. NAS techniques usually consist of an algorithm to search for the best architecture in a predetermined space of parameters or functions. Due to the number of deep neural architectures' parameters, this search space includes millions of parameters, which makes NAS a cost procedure and may lead the search to overfit the training set. To reduce NAS search spaces' complexity and still obtain competitive results, we propose CoNAS, a committee of NAS-based models, by restricting the search spaces to perform Differentiable ARchiTecture Search (DARTS). Our results point to improved accuracy over DARTS on CIFAR-10, training the networks from scratch. and Imagnette, using a transfer learning approach.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9533446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络架构搜索(NAS)取得了令人印象深刻的结果,并生成了与人类分类相当的模型。自动化神经架构的定义减少了对专家工作的需求,并减轻了架构设计中的人为偏见。NAS技术通常由一种算法组成,用于在预先确定的参数或功能空间中搜索最佳架构。由于深度神经结构参数的数量,该搜索空间包含数百万个参数,这使得NAS成为一个代价过程,并可能导致搜索过拟合训练集。为了降低NAS搜索空间的复杂性并获得有竞争力的结果,我们提出了一种基于NAS的模型委员会CoNAS,通过限制搜索空间来执行可微分架构搜索(DARTS)。我们的结果表明,通过从头开始训练网络,CIFAR-10上的dart精度得到了提高。和Imagnette,使用迁移学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Committee of NAS-based models
Network Architecture Search (NAS) has achieved impressive results and generated models comparable with humans' classifications. Automating the definition of a neural architecture reduces the need for expert work efforts and mitigates human bias from architecture design. NAS techniques usually consist of an algorithm to search for the best architecture in a predetermined space of parameters or functions. Due to the number of deep neural architectures' parameters, this search space includes millions of parameters, which makes NAS a cost procedure and may lead the search to overfit the training set. To reduce NAS search spaces' complexity and still obtain competitive results, we propose CoNAS, a committee of NAS-based models, by restricting the search spaces to perform Differentiable ARchiTecture Search (DARTS). Our results point to improved accuracy over DARTS on CIFAR-10, training the networks from scratch. and Imagnette, using a transfer learning approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信