对非平稳环境具有高精度和高自适应率的遍历离散估计学习自动机

A. Vasilakos, G. Papadimitriou
{"title":"对非平稳环境具有高精度和高自适应率的遍历离散估计学习自动机","authors":"A. Vasilakos, G. Papadimitriou","doi":"10.1109/TAI.1990.130342","DOIUrl":null,"url":null,"abstract":"A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments\",\"authors\":\"A. Vasilakos, G. Papadimitriou\",\"doi\":\"10.1109/TAI.1990.130342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

介绍了一种新颖的遍历离散学习自动机,它是最优的。它采用了一种新的估计学习算法,该算法基于环境响应的最新历史,能够在非平稳随机环境中运行。所提出的自动机比经典的奖罚遍历方案具有更高的性能。大量的仿真结果表明了该方案的优越性。进一步证明了它在任何随机环境下都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments
A novel ergodic discretized learning automaton which is epsilon-optimal is introduced. It utilizes a novel estimator learning algorithm which is based on the recent history of the environmental responses and is able to operate in nonstationary stochastic environments. The proposed automaton achieves significantly higher performance than the classical reward-penalty ergodic schemes. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that it is epsilon-optimal in every stochastic environment.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信