基于量子多类支持向量机和量子单对全方法的大数据分类

Arit Kumar Bishwas, Ashish Mani, V. Palade
{"title":"基于量子多类支持向量机和量子单对全方法的大数据分类","authors":"Arit Kumar Bishwas, Ashish Mani, V. Palade","doi":"10.1109/IC3I.2016.7918805","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a quantum approach for multiclass support vector machines to handle big data classification. To achieve this goal, we have also developed and implemented a quantum version of the one-against-all algorithm. The proposed approach demonstrates that the big data multiclass classification can be implemented with quantum multiclass support vector machine in logarithmic time complexity on a quantum computer, compared to the classical multiclass support vector machines that can be implemented with polynomial time complexity. Hence, our proposed approach exhibits an exponential speed up in time complexity for big data multiclass classification.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Big data classification with quantum multiclass SVM and quantum one-against-all approach\",\"authors\":\"Arit Kumar Bishwas, Ashish Mani, V. Palade\",\"doi\":\"10.1109/IC3I.2016.7918805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have proposed a quantum approach for multiclass support vector machines to handle big data classification. To achieve this goal, we have also developed and implemented a quantum version of the one-against-all algorithm. The proposed approach demonstrates that the big data multiclass classification can be implemented with quantum multiclass support vector machine in logarithmic time complexity on a quantum computer, compared to the classical multiclass support vector machines that can be implemented with polynomial time complexity. Hence, our proposed approach exhibits an exponential speed up in time complexity for big data multiclass classification.\",\"PeriodicalId\":305971,\"journal\":{\"name\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2016.7918805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7918805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种多类支持向量机处理大数据分类的量子方法。为了实现这一目标,我们还开发并实现了一种量子版本的“一对所有”算法。该方法表明,与经典多类支持向量机的多项式时间复杂度相比,量子多类支持向量机可以在量子计算机上以对数时间复杂度实现大数据多类分类。因此,我们提出的方法在大数据多类分类的时间复杂度上表现出指数级的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data classification with quantum multiclass SVM and quantum one-against-all approach
In this paper, we have proposed a quantum approach for multiclass support vector machines to handle big data classification. To achieve this goal, we have also developed and implemented a quantum version of the one-against-all algorithm. The proposed approach demonstrates that the big data multiclass classification can be implemented with quantum multiclass support vector machine in logarithmic time complexity on a quantum computer, compared to the classical multiclass support vector machines that can be implemented with polynomial time complexity. Hence, our proposed approach exhibits an exponential speed up in time complexity for big data multiclass classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信