Paul-Baptiste Rubio , Ludovic Chamoin , François Louf
{"title":"实时贝叶斯数据同化与数据选择,修正模型偏差,并在飞行的不确定性传播","authors":"Paul-Baptiste Rubio , Ludovic Chamoin , François Louf","doi":"10.1016/j.crme.2019.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>The work introduces new advanced numerical tools for data assimilation in structural mechanics. Considering the general Bayesian inference context, the proposed approach performs real-time and robust sequential updating of selected parameters of a numerical model from noisy measurements, so that accurate predictions on outputs of interest can be made from the numerical simulator. The approach leans on the joint use of Transport Map sampling and PGD model reduction into the Bayesian framework. In addition, a procedure for the dynamical and data-based correction of model bias during the sequential Bayesian inference is set up, and a procedure based on sensitivity analysis is proposed for the selection of the most relevant data among a large set of data, as encountered for instance with full-field measurements coming from digital image/volume correlation (DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated on a specific example addressing structural integrity on damageable concrete structures, and dealing with the prediction of crack propagation from a damage model and DIC experimental data.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 762-779"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.004","citationCount":"10","resultStr":"{\"title\":\"Real-time Bayesian data assimilation with data selection, correction of model bias, and on-the-fly uncertainty propagation\",\"authors\":\"Paul-Baptiste Rubio , Ludovic Chamoin , François Louf\",\"doi\":\"10.1016/j.crme.2019.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work introduces new advanced numerical tools for data assimilation in structural mechanics. Considering the general Bayesian inference context, the proposed approach performs real-time and robust sequential updating of selected parameters of a numerical model from noisy measurements, so that accurate predictions on outputs of interest can be made from the numerical simulator. The approach leans on the joint use of Transport Map sampling and PGD model reduction into the Bayesian framework. In addition, a procedure for the dynamical and data-based correction of model bias during the sequential Bayesian inference is set up, and a procedure based on sensitivity analysis is proposed for the selection of the most relevant data among a large set of data, as encountered for instance with full-field measurements coming from digital image/volume correlation (DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated on a specific example addressing structural integrity on damageable concrete structures, and dealing with the prediction of crack propagation from a damage model and DIC experimental data.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 11\",\"pages\":\"Pages 762-779\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.004\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301755\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301755","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Real-time Bayesian data assimilation with data selection, correction of model bias, and on-the-fly uncertainty propagation
The work introduces new advanced numerical tools for data assimilation in structural mechanics. Considering the general Bayesian inference context, the proposed approach performs real-time and robust sequential updating of selected parameters of a numerical model from noisy measurements, so that accurate predictions on outputs of interest can be made from the numerical simulator. The approach leans on the joint use of Transport Map sampling and PGD model reduction into the Bayesian framework. In addition, a procedure for the dynamical and data-based correction of model bias during the sequential Bayesian inference is set up, and a procedure based on sensitivity analysis is proposed for the selection of the most relevant data among a large set of data, as encountered for instance with full-field measurements coming from digital image/volume correlation (DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated on a specific example addressing structural integrity on damageable concrete structures, and dealing with the prediction of crack propagation from a damage model and DIC experimental data.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.