基于统计学习模型的指挥行为评价

Xiao bo Niu, Qun Fang, Xiao Shao
{"title":"基于统计学习模型的指挥行为评价","authors":"Xiao bo Niu, Qun Fang, Xiao Shao","doi":"10.1109/CCDC.2019.8832748","DOIUrl":null,"url":null,"abstract":"According to the characteristics of command behavior, a command behavior evaluation model based on statistical learning modeling is established, and Gaussian process prediction method is used to evaluate the command behavior. Compared with machine learning methods such as neural network and Support Vector Machine, the output results of Gaussian process have probability meanings and can evaluate the validity and confidence of the predicted results. The algorithm is proved to be effective by comparing it with Support Vector Machine (SVM).","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Command Behavior Evaluation Based on Statistical Learning Modeling\",\"authors\":\"Xiao bo Niu, Qun Fang, Xiao Shao\",\"doi\":\"10.1109/CCDC.2019.8832748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the characteristics of command behavior, a command behavior evaluation model based on statistical learning modeling is established, and Gaussian process prediction method is used to evaluate the command behavior. Compared with machine learning methods such as neural network and Support Vector Machine, the output results of Gaussian process have probability meanings and can evaluate the validity and confidence of the predicted results. The algorithm is proved to be effective by comparing it with Support Vector Machine (SVM).\",\"PeriodicalId\":254705,\"journal\":{\"name\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2019.8832748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8832748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据指挥行为的特点,建立了基于统计学习建模的指挥行为评价模型,并采用高斯过程预测方法对指挥行为进行评价。与神经网络、支持向量机等机器学习方法相比,高斯过程的输出结果具有概率意义,可以对预测结果的有效性和置信度进行评价。通过与支持向量机(SVM)的比较,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Command Behavior Evaluation Based on Statistical Learning Modeling
According to the characteristics of command behavior, a command behavior evaluation model based on statistical learning modeling is established, and Gaussian process prediction method is used to evaluate the command behavior. Compared with machine learning methods such as neural network and Support Vector Machine, the output results of Gaussian process have probability meanings and can evaluate the validity and confidence of the predicted results. The algorithm is proved to be effective by comparing it with Support Vector Machine (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信