通过检测光流信号中的特征运动来实现低成本的自动目标分割

Alan Broun, M. Studley
{"title":"通过检测光流信号中的特征运动来实现低成本的自动目标分割","authors":"Alan Broun, M. Studley","doi":"10.1109/ICIT.2011.5754399","DOIUrl":null,"url":null,"abstract":"Induced motion provides a cheap and reliable way of segmenting an object from the background within an image. As such it has potential applications to a wide variety of machine vision systems. This paper presents a system that segments an object from the background by inducing a sinusoidal motion and then searching for the signal in the resulting optical flow. The effectiveness of the system is evaluated using ROC curves and shown to be reliable and robust in the presence of distractor motions.","PeriodicalId":356868,"journal":{"name":"2011 IEEE International Conference on Industrial Technology","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low cost automatic object segmentation by detecting a signature motion within an optical flow signal\",\"authors\":\"Alan Broun, M. Studley\",\"doi\":\"10.1109/ICIT.2011.5754399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induced motion provides a cheap and reliable way of segmenting an object from the background within an image. As such it has potential applications to a wide variety of machine vision systems. This paper presents a system that segments an object from the background by inducing a sinusoidal motion and then searching for the signal in the resulting optical flow. The effectiveness of the system is evaluated using ROC curves and shown to be reliable and robust in the presence of distractor motions.\",\"PeriodicalId\":356868,\"journal\":{\"name\":\"2011 IEEE International Conference on Industrial Technology\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2011.5754399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2011.5754399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

诱导运动提供了一种廉价而可靠的方法,可以将图像中的物体从背景中分割出来。因此,它在各种各样的机器视觉系统中具有潜在的应用。本文提出了一种系统,该系统通过诱导正弦运动从背景中分割出目标,然后在产生的光流中搜索信号。使用ROC曲线对系统的有效性进行了评估,并显示出在存在干扰物运动时的可靠性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low cost automatic object segmentation by detecting a signature motion within an optical flow signal
Induced motion provides a cheap and reliable way of segmenting an object from the background within an image. As such it has potential applications to a wide variety of machine vision systems. This paper presents a system that segments an object from the background by inducing a sinusoidal motion and then searching for the signal in the resulting optical flow. The effectiveness of the system is evaluated using ROC curves and shown to be reliable and robust in the presence of distractor motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信