{"title":"基于语音认知负荷分类的声门特征","authors":"T. Yap, J. Epps, E. Choi, E. Ambikairajah","doi":"10.1109/ICASSP.2010.5494987","DOIUrl":null,"url":null,"abstract":"Cognitive load measurement is important when designing adaptive interfaces that optimize the performance of users working on high mental load tasks. Recent research on automatic speech-based measurement system indicates that cognitive load information is more prominent in the frequency region below 1 kHz. This study investigates the effects of cognitive load on glottal parameters (open quotient, normalized amplitude quotient and speed quotient), and proposes a system employing these parameters as features for cognitive load classification. Analysis of the glottal parameter distributions suggests that an increase in cognitive load can be related to a more creaky voice quality. Additionally, three-class classification results show that score-level fusion of systems based on the glottal features and baseline features (MFCCs, pitch, intensity and shifted delta cepstra) improves the baseline accuracy from 79% to 84%.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Glottal features for speech-based cognitive load classification\",\"authors\":\"T. Yap, J. Epps, E. Choi, E. Ambikairajah\",\"doi\":\"10.1109/ICASSP.2010.5494987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive load measurement is important when designing adaptive interfaces that optimize the performance of users working on high mental load tasks. Recent research on automatic speech-based measurement system indicates that cognitive load information is more prominent in the frequency region below 1 kHz. This study investigates the effects of cognitive load on glottal parameters (open quotient, normalized amplitude quotient and speed quotient), and proposes a system employing these parameters as features for cognitive load classification. Analysis of the glottal parameter distributions suggests that an increase in cognitive load can be related to a more creaky voice quality. Additionally, three-class classification results show that score-level fusion of systems based on the glottal features and baseline features (MFCCs, pitch, intensity and shifted delta cepstra) improves the baseline accuracy from 79% to 84%.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5494987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5494987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glottal features for speech-based cognitive load classification
Cognitive load measurement is important when designing adaptive interfaces that optimize the performance of users working on high mental load tasks. Recent research on automatic speech-based measurement system indicates that cognitive load information is more prominent in the frequency region below 1 kHz. This study investigates the effects of cognitive load on glottal parameters (open quotient, normalized amplitude quotient and speed quotient), and proposes a system employing these parameters as features for cognitive load classification. Analysis of the glottal parameter distributions suggests that an increase in cognitive load can be related to a more creaky voice quality. Additionally, three-class classification results show that score-level fusion of systems based on the glottal features and baseline features (MFCCs, pitch, intensity and shifted delta cepstra) improves the baseline accuracy from 79% to 84%.