几何中的弗罗本纽斯技巧

Z. Patakfalvi
{"title":"几何中的弗罗本纽斯技巧","authors":"Z. Patakfalvi","doi":"10.1090/PSPUM/097.1/01683","DOIUrl":null,"url":null,"abstract":"This is a survey for the 2015 AMS Summer Institute on Algebraic Geometry about the Frobenius type techniques recently used extensively in positive characteristic algebraic geometry. We first explain the basic ideas through simple versions of the fundamental definitions and statements, and then we survey most of the recent algebraic geometry results obtained using these techniques.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Frobenius techniques in birational\\n geometry\",\"authors\":\"Z. Patakfalvi\",\"doi\":\"10.1090/PSPUM/097.1/01683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey for the 2015 AMS Summer Institute on Algebraic Geometry about the Frobenius type techniques recently used extensively in positive characteristic algebraic geometry. We first explain the basic ideas through simple versions of the fundamental definitions and statements, and then we survey most of the recent algebraic geometry results obtained using these techniques.\",\"PeriodicalId\":412716,\"journal\":{\"name\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/097.1/01683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.1/01683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这是2015年AMS暑期代数几何研究所的一项调查,内容是最近在正特征代数几何中广泛使用的Frobenius型技术。我们首先通过基本定义和陈述的简单版本来解释基本思想,然后我们调查了最近使用这些技术获得的大多数代数几何结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius techniques in birational geometry
This is a survey for the 2015 AMS Summer Institute on Algebraic Geometry about the Frobenius type techniques recently used extensively in positive characteristic algebraic geometry. We first explain the basic ideas through simple versions of the fundamental definitions and statements, and then we survey most of the recent algebraic geometry results obtained using these techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信