一种初始化k均值聚类算法的新方法

X. Qin, Shijue Zheng
{"title":"一种初始化k均值聚类算法的新方法","authors":"X. Qin, Shijue Zheng","doi":"10.1109/KAM.2009.20","DOIUrl":null,"url":null,"abstract":"As a classic clustering method, the traditional K-Means algorithm has been widely used in pattern recognition and machine learning. It is known that the performance of the K-means clustering algorithm depend highly on initial cluster centers. Generally initial cluster centers are selected randomly, so the algorithm could not lead to the unique result. In this paper, we present a method to compute initial cluster centers for K-means clustering. Our method is based on an efficient technique for estimating the modes of a distribution. We apply the new method to the K-means algorithm. The experimental results show better performance of the proposed method.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A New Method for Initialising the K-Means Clustering Algorithm\",\"authors\":\"X. Qin, Shijue Zheng\",\"doi\":\"10.1109/KAM.2009.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a classic clustering method, the traditional K-Means algorithm has been widely used in pattern recognition and machine learning. It is known that the performance of the K-means clustering algorithm depend highly on initial cluster centers. Generally initial cluster centers are selected randomly, so the algorithm could not lead to the unique result. In this paper, we present a method to compute initial cluster centers for K-means clustering. Our method is based on an efficient technique for estimating the modes of a distribution. We apply the new method to the K-means algorithm. The experimental results show better performance of the proposed method.\",\"PeriodicalId\":192986,\"journal\":{\"name\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2009.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

传统的K-Means算法作为一种经典的聚类方法,在模式识别和机器学习中得到了广泛的应用。众所周知,k均值聚类算法的性能高度依赖于初始聚类中心。通常初始聚类中心的选择是随机的,因此算法不能得到唯一的结果。本文提出了一种计算k均值聚类初始聚类中心的方法。我们的方法是基于一种估计分布模态的有效技术。我们将新方法应用于K-means算法。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method for Initialising the K-Means Clustering Algorithm
As a classic clustering method, the traditional K-Means algorithm has been widely used in pattern recognition and machine learning. It is known that the performance of the K-means clustering algorithm depend highly on initial cluster centers. Generally initial cluster centers are selected randomly, so the algorithm could not lead to the unique result. In this paper, we present a method to compute initial cluster centers for K-means clustering. Our method is based on an efficient technique for estimating the modes of a distribution. We apply the new method to the K-means algorithm. The experimental results show better performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信