空中操纵中的稳定控制

M. Orsag, C. Korpela, M. Pekala, P. Oh
{"title":"空中操纵中的稳定控制","authors":"M. Orsag, C. Korpela, M. Pekala, P. Oh","doi":"10.1109/ACC.2013.6580711","DOIUrl":null,"url":null,"abstract":"Aerial manipulation, grasping, and perching in small unmanned aerial vehicles (UAVs) require specific control systems to compensate for changing inertial properties. Grasped objects, external forces from terrain objects, or manipulator movements themselves may destabilize or otherwise alter the flight characteristics of small UAVs during operation resulting in undesirable outcomes. Traditional control methods that assume static mass and inertial properties must be modified to produce stable control of a quadrotor system. This paper presents work towards a control scheme to achieve dynamic stability of an aerial vehicle while under the influence of manipulators and grasped objects. A quadrotor with attached multi-degree of freedom manipulators is implemented in simulation and constructed for testing. Compensation of the inertial changes due to in-flight manipulator movements is investigated. A control scheme is developed and results are presented.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Stability control in aerial manipulation\",\"authors\":\"M. Orsag, C. Korpela, M. Pekala, P. Oh\",\"doi\":\"10.1109/ACC.2013.6580711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial manipulation, grasping, and perching in small unmanned aerial vehicles (UAVs) require specific control systems to compensate for changing inertial properties. Grasped objects, external forces from terrain objects, or manipulator movements themselves may destabilize or otherwise alter the flight characteristics of small UAVs during operation resulting in undesirable outcomes. Traditional control methods that assume static mass and inertial properties must be modified to produce stable control of a quadrotor system. This paper presents work towards a control scheme to achieve dynamic stability of an aerial vehicle while under the influence of manipulators and grasped objects. A quadrotor with attached multi-degree of freedom manipulators is implemented in simulation and constructed for testing. Compensation of the inertial changes due to in-flight manipulator movements is investigated. A control scheme is developed and results are presented.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

小型无人驾驶飞行器(uav)的空中操纵、抓取和栖息需要特定的控制系统来补偿惯性特性的变化。在操作过程中,被抓取的物体、来自地形物体的外力或操纵器运动本身可能会破坏或改变小型无人机的飞行特性,从而导致不良后果。传统的控制方法假设静态质量和惯性特性必须修改,以产生稳定的控制四旋翼系统。本文提出了一种飞行器在操纵臂和被抓物体影响下的动态稳定控制方案。仿真实现了一种附加多自由度机械臂的四旋翼飞行器,并进行了实验构造。研究了机械臂运动引起的惯性变化的补偿问题。提出了一种控制方案,并给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability control in aerial manipulation
Aerial manipulation, grasping, and perching in small unmanned aerial vehicles (UAVs) require specific control systems to compensate for changing inertial properties. Grasped objects, external forces from terrain objects, or manipulator movements themselves may destabilize or otherwise alter the flight characteristics of small UAVs during operation resulting in undesirable outcomes. Traditional control methods that assume static mass and inertial properties must be modified to produce stable control of a quadrotor system. This paper presents work towards a control scheme to achieve dynamic stability of an aerial vehicle while under the influence of manipulators and grasped objects. A quadrotor with attached multi-degree of freedom manipulators is implemented in simulation and constructed for testing. Compensation of the inertial changes due to in-flight manipulator movements is investigated. A control scheme is developed and results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信