基于组lasso正则化多核学习的异构特征选择

Yi-Ren Yeh, Y. Chung, Ting-Chu Lin, Y. Wang
{"title":"基于组lasso正则化多核学习的异构特征选择","authors":"Yi-Ren Yeh, Y. Chung, Ting-Chu Lin, Y. Wang","doi":"10.1109/IJCNN.2011.6033554","DOIUrl":null,"url":null,"abstract":"We propose a novel multiple kernel learning (MKL) algorithm with a group lasso regularizer, called group lasso regularized MKL (GL-MKL), for heterogeneous feature selection. We extend the existing MKL algorithm and impose a mixed ℓ1 and ℓ2 norm constraint (known as group lasso) as the regularizer. Our GL-MKL determines the optimal base kernels, including the associated weights and kernel parameters, and results in a compact set of features for comparable or improved recognition performance. The use of our GL-MKL avoids the problem of choosing the proper technique to normalize the feature attributes collected from heterogeneous domains (and thus with different properties and distribution ranges). Our approach does not need to exhaustively search for the entire feature space when performing feature selection like prior sequential-based feature selection methods did, and we do not require any prior knowledge on the optimal size of the feature subset either. Comparisons with existing MKL or sequential-based feature selection methods on a variety of datasets confirm the effectiveness of our method in selecting a compact feature subset for comparable or improved classification performance.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Group lasso regularized multiple kernel learning for heterogeneous feature selection\",\"authors\":\"Yi-Ren Yeh, Y. Chung, Ting-Chu Lin, Y. Wang\",\"doi\":\"10.1109/IJCNN.2011.6033554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel multiple kernel learning (MKL) algorithm with a group lasso regularizer, called group lasso regularized MKL (GL-MKL), for heterogeneous feature selection. We extend the existing MKL algorithm and impose a mixed ℓ1 and ℓ2 norm constraint (known as group lasso) as the regularizer. Our GL-MKL determines the optimal base kernels, including the associated weights and kernel parameters, and results in a compact set of features for comparable or improved recognition performance. The use of our GL-MKL avoids the problem of choosing the proper technique to normalize the feature attributes collected from heterogeneous domains (and thus with different properties and distribution ranges). Our approach does not need to exhaustively search for the entire feature space when performing feature selection like prior sequential-based feature selection methods did, and we do not require any prior knowledge on the optimal size of the feature subset either. Comparisons with existing MKL or sequential-based feature selection methods on a variety of datasets confirm the effectiveness of our method in selecting a compact feature subset for comparable or improved classification performance.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于群lasso正则化器的多核学习算法,称为群lasso正则化MKL (GL-MKL),用于异构特征选择。我们扩展了现有的MKL算法,并施加了一个混合的1和2范数约束(称为群lasso)作为正则化器。我们的GL-MKL确定了最优的基本内核,包括相关的权重和内核参数,并产生了一组紧凑的特征,可用于相当或改进的识别性能。使用我们的GL-MKL避免了选择合适的技术来规范化从异构域(因此具有不同的属性和分布范围)收集的特征属性的问题。在进行特征选择时,我们的方法不需要像先前基于序列的特征选择方法那样穷尽搜索整个特征空间,并且我们也不需要任何关于特征子集的最佳大小的先验知识。与现有的MKL或基于序列的特征选择方法在各种数据集上的比较证实了我们的方法在选择紧凑特征子集以获得可比或改进的分类性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group lasso regularized multiple kernel learning for heterogeneous feature selection
We propose a novel multiple kernel learning (MKL) algorithm with a group lasso regularizer, called group lasso regularized MKL (GL-MKL), for heterogeneous feature selection. We extend the existing MKL algorithm and impose a mixed ℓ1 and ℓ2 norm constraint (known as group lasso) as the regularizer. Our GL-MKL determines the optimal base kernels, including the associated weights and kernel parameters, and results in a compact set of features for comparable or improved recognition performance. The use of our GL-MKL avoids the problem of choosing the proper technique to normalize the feature attributes collected from heterogeneous domains (and thus with different properties and distribution ranges). Our approach does not need to exhaustively search for the entire feature space when performing feature selection like prior sequential-based feature selection methods did, and we do not require any prior knowledge on the optimal size of the feature subset either. Comparisons with existing MKL or sequential-based feature selection methods on a variety of datasets confirm the effectiveness of our method in selecting a compact feature subset for comparable or improved classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信