肌肉异常活动检测仪器的系统研制

J. Yee, C. Y. Low, N. M. Hashim, F. A. Hanapiah, Ching Theng Koh, N. Zakaria, Khairunnisa Johar, Nurul Atiqah Othman
{"title":"肌肉异常活动检测仪器的系统研制","authors":"J. Yee, C. Y. Low, N. M. Hashim, F. A. Hanapiah, Ching Theng Koh, N. Zakaria, Khairunnisa Johar, Nurul Atiqah Othman","doi":"10.1109/CASE49439.2021.9551525","DOIUrl":null,"url":null,"abstract":"Anomaly detection algorithms have vast applications, from fraud detection in business transactions to rare pattern detection in a production line to help prevent machinery failures. The availability of quantitative clinical data makes a compelling case for using anomaly detection algorithms in clinical settings, for instance, to help prevent diagnosis errors. This work evaluates the feasibility of using Isolation Forest algorithm for detection of spikes in surface electromyography (sEMG) of biceps and muscle resistive force in upper limb spasticity datasets. Results show that the anomaly detection in sEMG data is a good predictor for the occurrence of catch. It could be deployed in rehabilitation robotic systems for injury prevention by linking the anomaly detection to the actuation module exerting force in the system.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"46 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Systematic Development of Machine for Abnormal Muscle Activity Detection\",\"authors\":\"J. Yee, C. Y. Low, N. M. Hashim, F. A. Hanapiah, Ching Theng Koh, N. Zakaria, Khairunnisa Johar, Nurul Atiqah Othman\",\"doi\":\"10.1109/CASE49439.2021.9551525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection algorithms have vast applications, from fraud detection in business transactions to rare pattern detection in a production line to help prevent machinery failures. The availability of quantitative clinical data makes a compelling case for using anomaly detection algorithms in clinical settings, for instance, to help prevent diagnosis errors. This work evaluates the feasibility of using Isolation Forest algorithm for detection of spikes in surface electromyography (sEMG) of biceps and muscle resistive force in upper limb spasticity datasets. Results show that the anomaly detection in sEMG data is a good predictor for the occurrence of catch. It could be deployed in rehabilitation robotic systems for injury prevention by linking the anomaly detection to the actuation module exerting force in the system.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"46 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

异常检测算法有着广泛的应用,从商业交易中的欺诈检测到生产线中帮助防止机器故障的罕见模式检测。定量临床数据的可用性为在临床环境中使用异常检测算法提供了一个令人信服的案例,例如,帮助防止诊断错误。这项工作评估了在上肢痉挛数据集中使用隔离森林算法检测二头肌表面肌电图(sEMG)峰值和肌肉阻力的可行性。结果表明,表面肌电信号中的异常检测可以很好地预测捕获的发生。它可以部署在康复机器人系统中,通过将异常检测与系统中施加力的驱动模块连接起来,预防伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Development of Machine for Abnormal Muscle Activity Detection
Anomaly detection algorithms have vast applications, from fraud detection in business transactions to rare pattern detection in a production line to help prevent machinery failures. The availability of quantitative clinical data makes a compelling case for using anomaly detection algorithms in clinical settings, for instance, to help prevent diagnosis errors. This work evaluates the feasibility of using Isolation Forest algorithm for detection of spikes in surface electromyography (sEMG) of biceps and muscle resistive force in upper limb spasticity datasets. Results show that the anomaly detection in sEMG data is a good predictor for the occurrence of catch. It could be deployed in rehabilitation robotic systems for injury prevention by linking the anomaly detection to the actuation module exerting force in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信