基于模拟退火的多目标遗传算法

Tang Xin-Hua, Chang Xu, Fang Zhifeng
{"title":"基于模拟退火的多目标遗传算法","authors":"Tang Xin-Hua, Chang Xu, Fang Zhifeng","doi":"10.1109/MINES.2012.34","DOIUrl":null,"url":null,"abstract":"Combined the characteristic of simulated annealing, we propose a multi-objective genetic algorithm based on simulated annealing. We take the advantage of simulated annealing, improve the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm. Experimental results show that the improved algorithm improve the solution efficiency of the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm effectively.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multi-objective Genetic Algorithm Based on Simulated Annealing\",\"authors\":\"Tang Xin-Hua, Chang Xu, Fang Zhifeng\",\"doi\":\"10.1109/MINES.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined the characteristic of simulated annealing, we propose a multi-objective genetic algorithm based on simulated annealing. We take the advantage of simulated annealing, improve the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm. Experimental results show that the improved algorithm improve the solution efficiency of the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm effectively.\",\"PeriodicalId\":208089,\"journal\":{\"name\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MINES.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

结合模拟退火的特点,提出了一种基于模拟退火的多目标遗传算法。我们利用模拟退火的优势,对传统的多目标遗传算法进行了改进,避免了算法的过早收敛。实验结果表明,改进算法提高了传统多目标遗传算法的求解效率,有效地避免了算法的过早收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-objective Genetic Algorithm Based on Simulated Annealing
Combined the characteristic of simulated annealing, we propose a multi-objective genetic algorithm based on simulated annealing. We take the advantage of simulated annealing, improve the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm. Experimental results show that the improved algorithm improve the solution efficiency of the traditional multi-objective genetic algorithm, and avoid the premature convergence of the algorithm effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信