基于稳健长短期记忆模型的工业聚乙烯工艺质量预测

Qiao Liu, Weiwei Guo, Liangfeng Xu, Zengliang Gao, Yi Liu
{"title":"基于稳健长短期记忆模型的工业聚乙烯工艺质量预测","authors":"Qiao Liu, Weiwei Guo, Liangfeng Xu, Zengliang Gao, Yi Liu","doi":"10.1109/docs55193.2022.9967703","DOIUrl":null,"url":null,"abstract":"A challenge for construction of accurate soft sensors in the process industries is that industrial process data often contains various noise and outliers. A robust long short term memory (LSTM) neural network with the maximum correntropy criterion (MCC) is proposed to build a reliable soft sensor model. The proposed model employs an MCC-based objective function centred on a Gaussian kernel. Without tedious preprocessing approaches for process data, the proposed model can assign smaller weights to outliers to reduce their negative effects on prediction. Consequently, it can achieve better prediction performance compared with the traditional LSTM soft sensor without robust strategy. The quality prediction results on an industrial polyethylene process demonstrate its effectiveness and advantages.","PeriodicalId":348545,"journal":{"name":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality prediction of industrial polyethylene process with robust long short term memory model\",\"authors\":\"Qiao Liu, Weiwei Guo, Liangfeng Xu, Zengliang Gao, Yi Liu\",\"doi\":\"10.1109/docs55193.2022.9967703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A challenge for construction of accurate soft sensors in the process industries is that industrial process data often contains various noise and outliers. A robust long short term memory (LSTM) neural network with the maximum correntropy criterion (MCC) is proposed to build a reliable soft sensor model. The proposed model employs an MCC-based objective function centred on a Gaussian kernel. Without tedious preprocessing approaches for process data, the proposed model can assign smaller weights to outliers to reduce their negative effects on prediction. Consequently, it can achieve better prediction performance compared with the traditional LSTM soft sensor without robust strategy. The quality prediction results on an industrial polyethylene process demonstrate its effectiveness and advantages.\",\"PeriodicalId\":348545,\"journal\":{\"name\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/docs55193.2022.9967703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/docs55193.2022.9967703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过程工业中构建精确的软传感器面临的挑战是工业过程数据通常包含各种噪声和异常值。为了建立可靠的软测量模型,提出了一种具有最大熵准则的鲁棒长短期记忆神经网络。该模型采用以高斯核为中心的基于mcc的目标函数。该模型无需对过程数据进行繁琐的预处理,可以为异常值分配较小的权重,以减少异常值对预测的负面影响。因此,与没有鲁棒策略的传统LSTM软传感器相比,该方法具有更好的预测性能。对某工业聚乙烯工艺的质量预测结果表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality prediction of industrial polyethylene process with robust long short term memory model
A challenge for construction of accurate soft sensors in the process industries is that industrial process data often contains various noise and outliers. A robust long short term memory (LSTM) neural network with the maximum correntropy criterion (MCC) is proposed to build a reliable soft sensor model. The proposed model employs an MCC-based objective function centred on a Gaussian kernel. Without tedious preprocessing approaches for process data, the proposed model can assign smaller weights to outliers to reduce their negative effects on prediction. Consequently, it can achieve better prediction performance compared with the traditional LSTM soft sensor without robust strategy. The quality prediction results on an industrial polyethylene process demonstrate its effectiveness and advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信